题目大意:给定一地图,*可以和相邻的*匹配成一对儿,问最少需要对儿匹配才能使所有*都被匹配到。

很直白的最小点覆盖,即ans = 点集数-最大匹配数。

不过一开始要对图进行遍历得到点集,找到一个*就把点集数+1,并和周围的匹配即可。为了防止重复,

我只匹配了左边和上边的点。由于用邻接表保存了双向路,所以最后匹配结果会是最大匹配的二倍。

数据范围是40*10,匈牙利即可,因此不用Karp进行优化。

附AC代码:

#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
#define oo 0x3f3f3f3f
char maps[][];
int nums[][];
struct ad
{
int next, to;
} edge[];
int head[], edge_num, used[], vis[];
void Add(int x, int y)
{
edge[edge_num].next = head[x];
edge[edge_num].to = y;
head[x] = edge_num++;
}
bool Hungary(int u)
{
for(int i=head[u]; i!=-; i=edge[i].next)
{
int To = edge[i].to;
if(!vis[To])
{
vis[To] = ;
if(!used[To] || Hungary(used[To]))
{
used[To] = u;
return true;
}
} }
return false;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int m, n;
scanf("%d %d", &m, &n);
for(int i=; i<m; i++)
scanf("%s", maps[i]);
int cnt = ;
memset(head, -, sizeof(head));
edge_num = ;
for(int i=; i<m; i++)
for(int j=; j<n; j++)
{
if(maps[i][j]=='*')
{
cnt++;
nums[i][j] = cnt;
if(i>= && maps[i-][j]=='*')
{
Add(nums[i-][j], nums[i][j]);
Add(nums[i][j], nums[i-][j]);
}
if(j>= && maps[i][j-]=='*')
{
Add(nums[i][j], nums[i][j-]);
Add(nums[i][j-], nums[i][j]);
}
}
}
memset(used, , sizeof(used));
int ans = ;
for(int i=; i<=cnt; i++)
{
memset(vis, , sizeof(vis));
if(Hungary(i))ans++;
}
printf("%d\n", cnt-ans/);
}
return ;
}

Karp算法优化代码:

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <queue>
using namespace std;
#define oo 0x3f3f3f3f
const int Maxn = ;
char maps[][];
int nums[][], head[Maxn];
struct ad
{
int to, next;
}edge[Maxn*Maxn];
int depth, depx[Maxn], depy[Maxn], vis[Maxn], usedx[Maxn], usedy[Maxn], edge_num;
void Add(int x, int y)
{
edge[edge_num].to = y;
edge[edge_num].next = head[x];
head[x] = edge_num++;
}
bool bfs(int cnt)
{
memset(depx, -, sizeof(depx));
memset(depy, -, sizeof(depy));
depth = oo;
queue<int>Q;
for(int i=; i<=cnt; i++)
{
if(!usedx[i])
{
depx[i] = ;
Q.push(i);
}
} while(Q.size())
{
int now = Q.front();
Q.pop();
if(depx[now]>depth)return true; for(int i=head[now]; i!=-; i=edge[i].next)
{
int To = edge[i].to;
if(depy[To] == -)
{
depy[To] = depx[now] + ;
if(!usedy[To])
depth = depy[To];
else
{
depx[usedy[To]] = depy[To] + ;
Q.push(usedy[To]);
}
}
}
} if(depth==oo)return false;
return true;
}
bool Hungary(int u)
{
for(int i=head[u]; i!=-; i=edge[i].next)
{
int To = edge[i].to;
if(!vis[To])
{
vis[To] = ;
if(usedy[To] && depy[To]==depth)continue; if(!usedy[To] || Hungary(usedy[To]))
{
usedx[u] = To;
usedy[To] = u;
return true;
}
}
}
return false;
}
int Karp(int cnt)
{
memset(usedx, , sizeof(usedx));
memset(usedy, , sizeof(usedy)); int ans = ; while(bfs(cnt))
{
memset(vis, , sizeof(vis));
for(int i=; i<=cnt; i++)
if(!usedx[i] && Hungary(i))ans++;
}
return ans;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
edge_num = ;
scanf("%d %d", &n, &m);
for(int i=; i<n; i++)
scanf("%s", maps[i]);
memset(head, -, sizeof(head));
int cnt = ;
for(int i=; i<n; i++)
for(int j=; j<m; j++)
{
if(maps[i][j]=='*')
{
cnt++;
nums[i][j] = cnt;
if(i->= && maps[i-][j]=='*')
{
Add(nums[i-][j], nums[i][j]);
Add(nums[i][j], nums[i-][j]);
}
if(j->= && maps[i][j-]=='*')
{
Add(nums[i][j], nums[i][j-]);
Add(nums[i][j-], nums[i][j]);
}
}
}
int ans = Karp(cnt);
printf("%d\n", cnt-ans/);
}
return ;
}

POJ3020 匹配的更多相关文章

  1. POJ-3020 Antenna Placement---二分图匹配&最小路径覆盖&建图

    题目链接: https://vjudge.net/problem/POJ-3020 题目大意: 一个n*m的方阵 一个雷达可覆盖两个*,一个*可与四周的一个*被覆盖,一个*可被多个雷达覆盖问至少需要多 ...

  2. POJ3020:Antenna Placement(二分图匹配)

    Antnna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11093   Accepted: 5459 ...

  3. POJ3020【二分匹配】

    思路: ---说给自己 一开始想的是从1-h*w标记整幅图,建图是星号和 {他,与他相连的星号} 建边,肯定要去匹配"*"啊,所以空格一定不会去造,然后就理解成了最小点覆盖,然而对 ...

  4. POJ3020 二分图匹配——最小路径覆盖

    Description The Global Aerial Research Centre has been allotted the task of building the fifth gener ...

  5. poj3020二分图匹配

    The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...

  6. poj3020 二分图匹配 最大独立集

    这是一道水题, 这里是最大流解法,之后再补 坑在又忘了反向建边了 题意:给你二维bool数组,让你求出能用多米诺骨牌覆盖所有 1 且骨牌最少的放法(因为多米诺骨牌1*2的结构方便描述,原题没有),原本 ...

  7. POJ3020——Antenna Placement(二分图的最大匹配)

    Antenna Placement DescriptionThe Global Aerial Research Centre has been allotted the task of buildin ...

  8. poj3020 Antenna Placement 匈牙利算法求最小覆盖=最大匹配数(自身对应自身情况下要对半) 小圈圈圈点

    /** 题目:poj3020 Antenna Placement 链接:http://poj.org/problem?id=3020 题意: 给一个由'*'或者'o'组成的n*m大小的图,你可以用一个 ...

  9. javascript匹配各种括号书写是否正确

    今天在codewars上做了一道题,如下 看上去就是验证三种括号各种嵌套是否正确书写,本来一头雾水,一种括号很容易判断, 但是三种怎么判断! 本人只是个前端菜鸟,,不会什么高深的正则之类的. 于是,在 ...

随机推荐

  1. 思考力——提升企业竞争力的核心因素

    如果你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",加入这个PM.架构师的大家庭 · 思考力就是竞争力:在这个科技飞跃进步的时代,很多事物是我们未曾经历也难以预料的. ...

  2. shell 判断文件是否存在

    举例 #!/bin/sh myFile="/var /log/httpd/access.log" if [ ! -e "$myFile" ]; then tou ...

  3. Centos Cacti 0.8.8g

    一.Cacti简介1. cacti是用php语言实现的一个软件,它的主要功能是用snmp服务获取数据,然后用rrdtool储存和更新数据,当用户需要查看数据的时候用rrdtool生成图表呈现给用户.因 ...

  4. oracle contains

    1. 查询住址在北京的学生SELECT student_id,student_nameFROM studentsWHERE CONTAINS( address, 'beijing' )remark: ...

  5. 采用TCP协议实现PIC18F97J60 ethernet bootloader

    了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). TCP/IP Stac ...

  6. .NET获取根目录方法

    1.取得控制台应用程序的根目录方法 方法1.Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径 方法2.AppDomain.CurrentDomain.Ba ...

  7. java静态和动态代理原理

    一.代理概念 为某个对象提供一个代理,以控制对这个对象的访问. 代理类和委托类有共同的父类或父接口,这样在任何使用委托类对象的地方都可以用代理对象替代.代理类负责请求的预处理.过滤.将请求分派给委托类 ...

  8. Windows出现带空格文件名无法删除

    下午同事的电脑上突然出现一个文件夹,怎么也删除不了,也无法重命名. 直接删除文件夹提示:无法读取源文件或磁盘. 然后查相关进程,未发现异常.重启进安全模式下删除,一样的结果,提示:无法读取源文件或磁盘 ...

  9. (分享)Paxos在大型系统中常见的应用场景

    原帖http://timyang.net/distributed/paxos-scenarios/ 在分布式算法领域,有个非常重要的算法叫Paxos, 它的重要性有多高呢,Google的Chubby ...

  10. zend framework2 下载及安装

    1.安装XAMPP 2.安装zend studio 3.在GITHUB上下载一个zendframework模板,插入到IDE中 4.将下载的zend framework2文件夹解压放在vendor文件 ...