转自:http://www.jeremydjacksonphd.com/category/deep-learning/

Deep Learning Resources

Posted on May 13, 2015
 

Videos

  1. Deep Learning and Neural Networks with Kevin Duh: course page
  2. NY Course by Yann LeCun: 2014 version2015 version
  3. NIPS 2015 Deep Learning Tutorial by Yann LeCun and Yoshua Bengio (slides)(mp4,wmv)
  4. ICML 2013 Deep Learning Tutorial by Yann Lecun (slides)
  5. Geoffery Hinton’s cousera course on Neural Networks for Machine Learning
  6. Stanford 231n Class: Convolutional Neural Networks for Visual Recognition (videosgithubsyllabussubredditprojectfinal reportstwitter)
  7. Large Scale Visual Recognition Challenge 2014, arxiv paper
  8. GTC Deep Learning 2015
  9. Hugo Larochelle Neural Networks classslides
  10. My youtube playlist
  11. Yaser Abu-Mostafa’s Learning from Data course (youtube playlist)
  12. Stanford CS224d: Deep Learning for Natural Language Processing: syllabus, youtube playlistredditlonger playlist
  13. Neural Networks for Machine Perception: vimeo
  14. Deep Learning for NLP (without magic): pagebetter pagevideo1video2youtube playlist
  15. Introduction to Deep Learning with Python: videoslidescode
  16. Machine Learning course with emphasis on Deep Learning by Nando de Freitas (youtube playlist), course page, torch practicals
  17. NIPS 2013 Deep Learning for Computer Vision Tutorial – Rob Fergus: videoslides
  18. Tensorflow Udacity mooc

Links

  1. Deeplearning.net
  2. NVidia’s Deep Learning portal
  3. My flipboard page

AMIs, Docker images & Install Howtos

  1. Stanford 231n AWS AMI:  image is cs231n_caffe_torch7_keras_lasagne_v2, AMI ID: ami-125b2c72, Caffe, Torch7, Theano, Keras and Lasagne are pre-installed. Python bindings of caffe are available. It has CUDA 7.5 and CuDNN v3.
  2. AMI for AWS EC2 (g2.2xlarge): ubuntu14.04-mkl-cuda-dl (ami-03e67874) in Ireland Region: page,  Installed stuffs: Intel MKL, CUDA 7.0, cuDNN v2, theano, pylearn2, CXXNET, Caffe, cuda-convnet2, OverFeat, nnForge, Graphlab Create (GPU), etc.
  3. Chef cookbook for installing the Caffe deep learning framework
  4. Public EC2 AMI with Torch and Caffe deep learning toolkits (ami-027a4e6a): page
  5. Install Theano on AWS (ami-b141a2f5 with CUDA 7): page
  6. Running Caffe on AWS Instance via Docker: pagedocsimage
  7. CVPR 2015 ITorch Tutorial (ami-b36981d8): pagegithubcheatsheet
  8. Torch/iTorch/Ubuntu 14.04 Docker image: docker pull kaixhin/torch
  9. Torch/iTorch/CUDA 7/Ubuntu 14.04 Docker image: docker pull kaixhin/cuda-torch
  10. AMI containing Caffe, Python, Cuda 7, CuDNN, and all dependencies. Its id is ami-763a311e (disk min 8G,system is 4.6G), howto
  11. My Dockerfiles at GitHub

Examples and Tutorials

  1. IPython Caffe Classification
  2. IPython Detection, arxiv paper, rcnn github, selective search
  3. Machine Learning with Torch 7
  4. Deep Learning Tutorials with Theano/Python, CNNgithub
  5. Torch tutorialstutorial&demos from Clement Fabaret
  6. Brewing Imagenet with Caffe
  7. Training an Object Classifier in Torch-7 on multiple GPUs over ImageNet
  8. Stanford Deep Learning Matlab based Tutorial (githubdata)
  9. DIY Deep Learning for Vision: A Hands on tutorial with Caffe (google doc)
  10. Tutorial on Deep Learning for Vision CVPR 2014: page
  11. Pylearn2 tutorialsconvolutional networkgetthedata
  12. Pylearn2 quickstartdocs
  13. So you wanna try deep learning? post from SnippyHollow
  14. Object Detection ipython nb from SnippyHollow
  15. Filter Visualization ipython nb from SnippyHollow
  16. Specifics on CNN and DBN, and more
  17. CVPR 2015 Caffe Tutorial
  18. Deep Learning on Amazon EC2 GPU with Python and nolearn
  19. How to build and run your first deep learning network (video, behind paywall)
  20. Tensorflow examples
  21. Illia Polosukhin’s Getting Started with Tensorflow – Part 1Part 2Part 3
  22. CNTK Tutorial at NIPS 2015
  23. CNTK: FFNCNNLSTMRNN
  24. CNTK Introduction and Book

People

  1. Geoffery Hinton: Homepage, Reddit AMA (11/10/2014)
  2. Yann LeCun: Homepage, NYU Research Page, Reddit AMA (5/15/2014)
  3. Yoshua Bengio: Homepage, Reddit AMA (2/27/2014)
  4. Clement Fabaret: Scene Parsing (paper), github, code page
  5. Andrej Karpathy: Homepagetwittergithubblog
  6. Michael I Jordan: Homepage, Reddit AMA (9/10/2014)
  7. Andrew Ng: Homepage, Reddit AMA (4/15/2015)
  8. Jurden Schmidhuber: Homepage, Reddit AMA (3/4/2015)
  9. Nando de Freitas: HomepageYouTube, Reddit AMA (12/26/2015)

Datasets

  1. ImageNet
  2. MNIST (Wikipedia), database
  3. Kaggle datasets
  4. Kitti Vision Benchmark Suite
  5. Ford Campus Vision and Lidar Dataset
  6. PCL Lidar Datasets
  7. Pylearn2 list

Frameworks and Libraries

  1. Caffe: homepagegithubgoogle group
  2. Torch: homepagecheatsheetgithubgoogle group
  3. Theano: homepagegoogle group
  4. Tensorflow: homepagegithubgoogle groupskflow
  5. CNTK: homepagegithubwiki
  6. CuDNN: homepage
  7. PaddlePaddle: homepagegithubdocsquick start
  8. fbcunn: github
  9. pylearn2: githubdocs
  10. cuda-convnet2: homepagecuda-convnetmatlab
  11. nnForge: homepage
  12. Deep Learning software links
  13. Torch vs. Theano post
  14. Overfeat: pagegithubpaperslidesgoogle group
  15. Keras: githubdocsgoogle group
  16. Deeplearning4j: pagegithub
  17. Lasagne: docsgithub

Topics

  1. Scene Understanding (CVPR 2013, Lecun) (slides), Scene Parsing (paper)
  2. Overfeat: Integrated Recognition, Localization and Detection using Convolutional Networks (arxiv)
  3. Parsing Natural Scenes and Natural Language with Recursive Neural Networks: page, ICML 2011 paper

Reddit

  1. Machine Learning Reddit page
  2. Computer Vision Reddit page
  3. Reddit: Neural Networks: newrelevant
  4. Reddit: Deep Learning: newrelevant

Books

  1. Learning Deep Architectures for AI, Bengio (pdf)
  2. Neural Nets and Deep Learning (htmlgithub)
  3. Deep Learning, Bengio, Goodfellow, Courville (html)
  4. Neural Nets and Learning Machines, Haykin, 2008 (amazon)

Papers

  1. ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012 (paper)
  2. Why does unsupervised pre-training help deep learning? (paper)
  3. Hinton06 – Autoencoders (paper)
  4. Deep Learning using Linear Support Vector machines (paper)

Companies

  1. Kaggle: homepage
  2. Microsoft Deep Learning Technology Center

Conferences

  1. ICML
  2. PAMITC Sponsored Conferences
  3. NIPS2015

Posted in Deep LearningLeave a reply

(转) Deep Learning Resources的更多相关文章

  1. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  2. 深度学习阅读列表 Deep Learning Reading List

    Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...

  3. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  4. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

  5. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  6. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  7. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  8. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  9. A beginner’s introduction to Deep Learning

    A beginner’s introduction to Deep Learning I am Samvita from the Business Team of HyperVerge. I join ...

随机推荐

  1. K近邻分类法

    K近邻法 K近邻法:假定存在已标记的训练数据集,分类时对新的实例根据其K个最近邻的训练实例的类别,通过多数表决等分类决策规则进行预测. k近邻不具有显示学习的过程,是“懒惰学习”(lazy learn ...

  2. 2014年5月份第4周51Aspx源码发布详情

    最基本wcf服务器与客户端交互源码  2014-5-26 [VS2003]源码描述:本示例讲解的是最基本的wcf语法,示例浏览请先运行服务端,然后在运行客户端,适合想要学习wcf的初学者.仅供借鉴,欢 ...

  3. vim笔记2

    用vim 快两年了 看过教程也不少,总的来说还是得自己多练习,当自己觉得有需要的时候,再添加功能.这里分享个看过的最好的教程,出自贴吧的某个朋友,写的很好 零 学会盲打 壹 配置文件先从最简开始,在 ...

  4. Xcode清除缓存、清理多余证书

    Xcode清除缓存.清理多余证书 1.删除Xcode中多余的证书provisioning profile 手动删除: Xcode6 provisioning profile path: ~/Libra ...

  5. vmware 安装 macos

    http://jingyan.baidu.com/article/ff411625b9011212e48237b4.html

  6. ubuntu下修改进入root用户和修改文件权限

    (1)进入root用户 su root 密码:设置的root密码 (2)修改文件权限 sudo chmod +777  file (3)执行shell ./shellfile (4)编写shell 第 ...

  7. 关于容器为NavigationControlle时,view的起始位置的问题

    在iOS 7中,苹果引入了一个新的属性“EdgesForExtendedLayout”,默认值为UIRectEdgeAll,默认的布局将从navigationbar的顶部开始,这就是为什么所有元素都往 ...

  8. TableView遇到的问题

    1.所建立的TableView滑动不到底部的问题: tableView继承scrollerView,当tableview开始建立的时候,会先计算每个cell的高度和每个headerview的高度.fo ...

  9. C# 时间计算 今天、昨天、前天、明天 一个月的开始日期与结束日期

    C# 时间计算    今天.昨天.前天.明天   class Program    {        static void Main(string[] args)        {          ...

  10. PKU 1005

    比较简单吧,其实算是数学问题了 // 1005.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "stdio.h ...