http://www.cnblogs.com/batteryhp/p/5046433.html

5、示例:usda食品数据库

下面是一个具体的例子,书中最重要的就是例子。

#-*- encoding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame
import re
import json #加载下面30M+的数据
db = json.load(open('E:\\foods-2011-10-03.json'))
#print len(db)
#print type(db) #得到的db是个list,每个条目都是含有某种食物全部数据的字典
#print db[0] #这一条非常长
#print db[0].keys()
#nutrients 是keys中的一个key,它对应的值是有关食物营养成分的一个字典列表,很长……
#print db[0]['nutrients'][0]
#下面将营养成分做成DataFrame
nutrients = DataFrame(db[0]['nutrients']) #将字典列表直接做成DataFrame
#print nutrients.head()
#print type(db[0]['nutrients'])
info_keys = ['description','group','id','manufacturer']
info = DataFrame(db,columns = info_keys)
#print info
#查看分类分布情况
#print pd.value_counts(info.group)
#现在,为了将所有的营养数据进行分析,需要将所有营养成分整合到一个大表中,下面分几个步骤来完成
nutrients = [] for rec in db:
fnuts = DataFrame(rec['nutrients'])
fnuts['id'] = rec['id'] #广播
nutrients.append(fnuts)
nutrients = pd.concat(nutrients,ignore_index = True) #将列表连接起来,相当于rbind,把行对其连接在一起 #去重,这是数据处理的重要步骤
print nutrients.duplicated().sum()
nutrients = nutrients.drop_duplicates()
#由于nutrients与info有重复的名字,所以需要重命名一下info
#注意下面这样的命名方式
col_mapping = {'description':'food',
'group':'fgroup'}
#rename函数返回的是副本,需要copy = False
info = info.rename(columns = col_mapping,copy = False)
#print info.columns #查看一下列名
col_mapping = {'description':'nutrient','group':'nutgroup'}
nutrients = nutrients.rename(columns = col_mapping,copy = False)
#print nutrients.columns
#做完上面这些,显然我们需要将两个DataFrame合并起来
print nutrients.ix[:10,:]
#print info.id
ndata = pd.merge(nutrients,info,on = 'id',how = 'outer')
print ndata
print ndata.ix[3000]
#注意下面的处理方式很nice
result = ndata.groupby(['nutrient','fgroup'])['value'].quantile(0.5)
print result
result['Zinc, Zn'].order().plot(kind = 'barh')
plt.show()
#只要稍微动动脑子(作者不止一次说过了……额),就可以发现各营养成分最为丰富的食物是什么了
by_nuttriend = ndata.groupby(['nutgroup','nutrient'])
print by_nuttriend.head()
#注意下面取出最大值的方式
get_maximum = lambda x:x.xs(x.value.idxmax())
get_minimum = lambda x:x.xs(x.value.idxmin())
max_foods = by_nuttriend.apply(get_maximum)[['value','food']]
#让food小一点
max_foods.food = max_foods.food.str[:50]
print max_foods.head()
print max_foods.ix['Amino Acids']['food']
>>>
14179
                       nutrient     nutgroup units    value    id
0                       Protein  Composition     g    25.18  1008
1             Total lipid (fat)  Composition     g    29.20  1008
2   Carbohydrate, by difference  Composition     g     3.06  1008
3                           Ash        Other     g     3.28  1008
4                        Energy       Energy  kcal   376.00  1008
5                         Water  Composition     g    39.28  1008
6                        Energy       Energy    kJ  1573.00  1008
7          Fiber, total dietary  Composition     g     0.00  1008
8                   Calcium, Ca     Elements    mg   673.00  1008
9                      Iron, Fe     Elements    mg     0.64  1008
10                Magnesium, Mg     Elements    mg    22.00  1008
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns:
nutrient        375176  non-null values
nutgroup        375176  non-null values
units           375176  non-null values
value           375176  non-null values
id              375176  non-null values
food            375176  non-null values
fgroup          375176  non-null values
manufacturer    293054  non-null values
dtypes: float64(1), int64(1), object(6)
nutrient                 Glycine
nutgroup             Amino Acids
units                          g
value                      0.073
id                          1077
food            Spearmint, fresh
fgroup          Spices and Herbs
manufacturer                   
Name: 3000
nutrient          fgroup                          
Adjusted Protein  Sweets                               12.900
                  Vegetables and Vegetable Products     2.180
Alanine           Baby Foods                            0.085
                  Baked Products                        0.248
                  Beef Products                         1.550
                  Beverages                             0.003
                  Breakfast Cereals                     0.311
                  Cereal Grains and Pasta               0.373
                  Dairy and Egg Products                0.271
                  Ethnic Foods                          1.290
                  Fast Foods                            0.514
                  Fats and Oils                         0.000
                  Finfish and Shellfish Products        1.218
                  Fruits and Fruit Juices               0.027
                  Lamb, Veal, and Game Products         1.408
...
Zinc, Zn  Finfish and Shellfish Products       0.67
          Fruits and Fruit Juices              0.10
          Lamb, Veal, and Game Products        3.94
          Legumes and Legume Products          1.14
          Meals, Entrees, and Sidedishes       0.63
          Nut and Seed Products                3.29
          Pork Products                        2.32
          Poultry Products                     2.50
          Restaurant Foods                     0.80
          Sausages and Luncheon Meats          2.13
          Snacks                               1.47
          Soups, Sauces, and Gravies           0.20
          Spices and Herbs                     2.75
          Sweets                               0.36
          Vegetables and Vegetable Products    0.33
Length: 2246
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 467 entries, (u'Amino Acids', u'Alanine', 48) to (u'Vitamins', u'Vitamin K (phylloquinone)', 395)
Data columns:
nutrient        467  non-null values
nutgroup        467  non-null values
units           467  non-null values
value           467  non-null values
id              467  non-null values
food            467  non-null values
fgroup          467  non-null values
manufacturer    444  non-null values
dtypes: float64(1), int64(1), object(6)
                            value                                          food
nutgroup    nutrient                                                          
Amino Acids Alanine         8.009             Gelatins, dry powder, unsweetened
            Arginine        7.436                  Seeds, sesame flour, low-fat
            Aspartic acid  10.203                           Soy protein isolate
            Cystine         1.307  Seeds, cottonseed flour, low fat (glandless)
            Glutamic acid  17.452                           Soy protein isolate
nutrient
Alanine                           Gelatins, dry powder, unsweetened
Arginine                               Seeds, sesame flour, low-fat
Aspartic acid                                   Soy protein isolate
Cystine                Seeds, cottonseed flour, low fat (glandless)
Glutamic acid                                   Soy protein isolate
Glycine                           Gelatins, dry powder, unsweetened
Histidine                Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline    KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
Isoleucine        Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Leucine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Lysine            Seal, bearded (Oogruk), meat, dried (Alaska Na...
Methionine                    Fish, cod, Atlantic, dried and salted
Phenylalanine     Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Proline                           Gelatins, dry powder, unsweetened
Serine            Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine         Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan         Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine          Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine            Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food
[Finished in 14.1s]

 
分类: python

《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)的更多相关文章

  1. 《利用Python进行数据分析》笔记---第6章数据加载、存储与文件格式

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  2. 《利用Python进行数据分析》笔记---第5章pandas入门

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  3. 《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  4. 《利用Python进行数据分析》笔记---第2章--1880-2010年间全美婴儿姓名

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  5. 《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  6. 《利用Python进行数据分析》笔记---第2章--来自bit.ly的1.usa.gov数据

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  7. 【python】《利用python进行数据分析》笔记

    [第三章]ipython C-a 到行首 C-e 到行尾 %timeit 测量语句时间,%time是一次,%timeit是多次. %pdb是自动调试的开关. %debug中,可以用b 12在第12行设 ...

  8. Getting Started With Hazelcast 读书笔记(第七章)

    第七章 部署策略 Hazelcast具有适应性,能根据不同的架构和应用进行特定的部署配置,每个应用可以根据具体情况选择最优的配置: 数据与应用紧密结合的模式(重点,of就是这种) 胖客户端模式(最好用 ...

  9. 《利用python进行数据分析》读书笔记--第六章 数据加载、存储与文件格式

    http://www.cnblogs.com/batteryhp/p/5021858.html 输入输出一般分为下面几类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据.利用Web API ...

随机推荐

  1. B2C电子商务系统研发——商品SKU分析和设计(二)

    转:http://www.cnblogs.com/winstonyan/archive/2012/01/07/2315886.html 上文谈到5种商品SKU设计模式,本文将做些细化说明. 笔者研究过 ...

  2. 10个核心的Linux面试问题与答案

    http://www.geekfan.net/8571/ compgen ­-c,可以打印出所有支持的命令列表使用Linux 命令dirs可以将当前的目录栈打印出来.使用linux命令 ’disown ...

  3. ActiveMQ2

    package com.winner.topic; import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Con ...

  4. JAVASE02-Unit09: 多线程基础

    Unit09: 多线程基础 * 线程 * 线程用于并发执行多个任务.感官上像是"同时"执行 *  * 创建线程有两种方式. * 方式一: * 继承线程并重写run方法来定义线程要执 ...

  5. JavaNote01_变量 基本数据类型

    >主要内容: 变量的初始化.赋值.读写操作 8中基本数据类型(取值范围).整数的直接量(字面量)是哪种类型.浮点数的字面量是哪种类型 >变量 >>声明变量:开启一个存储单元,用 ...

  6. xcode调整debug,release模式

    今天调试的时候发现变量都不能查看了.在「lldb」中通过「po」命令来查看总是提示变量未找到. 环境 xcode 7, Swift 2 错误提示 ‘XXXX’ was compiled with op ...

  7. [译]何时使用 Parallel.ForEach,何时使用 PLINQ

    原作者: Pamela Vagata, Parallel Computing Platform Group, Microsoft Corporation 原文pdf:http://download.c ...

  8. [Android Tips] 23. How to fail/stop Gradle task immediately if some conditions are not met

    throw new GradleException("conditions are not met") 参考 How to fail/stop task immediately i ...

  9. 转载:谈谈Unicode编码,简要解释UCS、UTF、BMP、BOM等名词

    转载: 谈谈Unicode编码,简要解释UCS.UTF.BMP.BOM等名词 这是一篇程序员写给程序员的趣味读物.所谓趣味是指可以比较轻松地了解一些原来不清楚的概念,增进知识,类似于打RPG游戏的升级 ...

  10. C# 文件重命名

    记得C# File类中是没有rename这个方法 所以网上很多都用的是move moveTo copy+delete等这些方法 其实以上的方法 虽然可以实现功能 但看起来总觉得很蛋疼 今天百度 突然发 ...