http://www.cnblogs.com/batteryhp/p/5046433.html

5、示例:usda食品数据库

下面是一个具体的例子,书中最重要的就是例子。

#-*- encoding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame
import re
import json #加载下面30M+的数据
db = json.load(open('E:\\foods-2011-10-03.json'))
#print len(db)
#print type(db) #得到的db是个list,每个条目都是含有某种食物全部数据的字典
#print db[0] #这一条非常长
#print db[0].keys()
#nutrients 是keys中的一个key,它对应的值是有关食物营养成分的一个字典列表,很长……
#print db[0]['nutrients'][0]
#下面将营养成分做成DataFrame
nutrients = DataFrame(db[0]['nutrients']) #将字典列表直接做成DataFrame
#print nutrients.head()
#print type(db[0]['nutrients'])
info_keys = ['description','group','id','manufacturer']
info = DataFrame(db,columns = info_keys)
#print info
#查看分类分布情况
#print pd.value_counts(info.group)
#现在,为了将所有的营养数据进行分析,需要将所有营养成分整合到一个大表中,下面分几个步骤来完成
nutrients = [] for rec in db:
fnuts = DataFrame(rec['nutrients'])
fnuts['id'] = rec['id'] #广播
nutrients.append(fnuts)
nutrients = pd.concat(nutrients,ignore_index = True) #将列表连接起来,相当于rbind,把行对其连接在一起 #去重,这是数据处理的重要步骤
print nutrients.duplicated().sum()
nutrients = nutrients.drop_duplicates()
#由于nutrients与info有重复的名字,所以需要重命名一下info
#注意下面这样的命名方式
col_mapping = {'description':'food',
'group':'fgroup'}
#rename函数返回的是副本,需要copy = False
info = info.rename(columns = col_mapping,copy = False)
#print info.columns #查看一下列名
col_mapping = {'description':'nutrient','group':'nutgroup'}
nutrients = nutrients.rename(columns = col_mapping,copy = False)
#print nutrients.columns
#做完上面这些,显然我们需要将两个DataFrame合并起来
print nutrients.ix[:10,:]
#print info.id
ndata = pd.merge(nutrients,info,on = 'id',how = 'outer')
print ndata
print ndata.ix[3000]
#注意下面的处理方式很nice
result = ndata.groupby(['nutrient','fgroup'])['value'].quantile(0.5)
print result
result['Zinc, Zn'].order().plot(kind = 'barh')
plt.show()
#只要稍微动动脑子(作者不止一次说过了……额),就可以发现各营养成分最为丰富的食物是什么了
by_nuttriend = ndata.groupby(['nutgroup','nutrient'])
print by_nuttriend.head()
#注意下面取出最大值的方式
get_maximum = lambda x:x.xs(x.value.idxmax())
get_minimum = lambda x:x.xs(x.value.idxmin())
max_foods = by_nuttriend.apply(get_maximum)[['value','food']]
#让food小一点
max_foods.food = max_foods.food.str[:50]
print max_foods.head()
print max_foods.ix['Amino Acids']['food']
>>>
14179
                       nutrient     nutgroup units    value    id
0                       Protein  Composition     g    25.18  1008
1             Total lipid (fat)  Composition     g    29.20  1008
2   Carbohydrate, by difference  Composition     g     3.06  1008
3                           Ash        Other     g     3.28  1008
4                        Energy       Energy  kcal   376.00  1008
5                         Water  Composition     g    39.28  1008
6                        Energy       Energy    kJ  1573.00  1008
7          Fiber, total dietary  Composition     g     0.00  1008
8                   Calcium, Ca     Elements    mg   673.00  1008
9                      Iron, Fe     Elements    mg     0.64  1008
10                Magnesium, Mg     Elements    mg    22.00  1008
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns:
nutrient        375176  non-null values
nutgroup        375176  non-null values
units           375176  non-null values
value           375176  non-null values
id              375176  non-null values
food            375176  non-null values
fgroup          375176  non-null values
manufacturer    293054  non-null values
dtypes: float64(1), int64(1), object(6)
nutrient                 Glycine
nutgroup             Amino Acids
units                          g
value                      0.073
id                          1077
food            Spearmint, fresh
fgroup          Spices and Herbs
manufacturer                   
Name: 3000
nutrient          fgroup                          
Adjusted Protein  Sweets                               12.900
                  Vegetables and Vegetable Products     2.180
Alanine           Baby Foods                            0.085
                  Baked Products                        0.248
                  Beef Products                         1.550
                  Beverages                             0.003
                  Breakfast Cereals                     0.311
                  Cereal Grains and Pasta               0.373
                  Dairy and Egg Products                0.271
                  Ethnic Foods                          1.290
                  Fast Foods                            0.514
                  Fats and Oils                         0.000
                  Finfish and Shellfish Products        1.218
                  Fruits and Fruit Juices               0.027
                  Lamb, Veal, and Game Products         1.408
...
Zinc, Zn  Finfish and Shellfish Products       0.67
          Fruits and Fruit Juices              0.10
          Lamb, Veal, and Game Products        3.94
          Legumes and Legume Products          1.14
          Meals, Entrees, and Sidedishes       0.63
          Nut and Seed Products                3.29
          Pork Products                        2.32
          Poultry Products                     2.50
          Restaurant Foods                     0.80
          Sausages and Luncheon Meats          2.13
          Snacks                               1.47
          Soups, Sauces, and Gravies           0.20
          Spices and Herbs                     2.75
          Sweets                               0.36
          Vegetables and Vegetable Products    0.33
Length: 2246
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 467 entries, (u'Amino Acids', u'Alanine', 48) to (u'Vitamins', u'Vitamin K (phylloquinone)', 395)
Data columns:
nutrient        467  non-null values
nutgroup        467  non-null values
units           467  non-null values
value           467  non-null values
id              467  non-null values
food            467  non-null values
fgroup          467  non-null values
manufacturer    444  non-null values
dtypes: float64(1), int64(1), object(6)
                            value                                          food
nutgroup    nutrient                                                          
Amino Acids Alanine         8.009             Gelatins, dry powder, unsweetened
            Arginine        7.436                  Seeds, sesame flour, low-fat
            Aspartic acid  10.203                           Soy protein isolate
            Cystine         1.307  Seeds, cottonseed flour, low fat (glandless)
            Glutamic acid  17.452                           Soy protein isolate
nutrient
Alanine                           Gelatins, dry powder, unsweetened
Arginine                               Seeds, sesame flour, low-fat
Aspartic acid                                   Soy protein isolate
Cystine                Seeds, cottonseed flour, low fat (glandless)
Glutamic acid                                   Soy protein isolate
Glycine                           Gelatins, dry powder, unsweetened
Histidine                Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline    KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
Isoleucine        Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Leucine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Lysine            Seal, bearded (Oogruk), meat, dried (Alaska Na...
Methionine                    Fish, cod, Atlantic, dried and salted
Phenylalanine     Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Proline                           Gelatins, dry powder, unsweetened
Serine            Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine         Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan         Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine          Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine            Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food
[Finished in 14.1s]

 
分类: python

《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)的更多相关文章

  1. 《利用Python进行数据分析》笔记---第6章数据加载、存储与文件格式

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  2. 《利用Python进行数据分析》笔记---第5章pandas入门

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  3. 《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  4. 《利用Python进行数据分析》笔记---第2章--1880-2010年间全美婴儿姓名

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  5. 《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  6. 《利用Python进行数据分析》笔记---第2章--来自bit.ly的1.usa.gov数据

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  7. 【python】《利用python进行数据分析》笔记

    [第三章]ipython C-a 到行首 C-e 到行尾 %timeit 测量语句时间,%time是一次,%timeit是多次. %pdb是自动调试的开关. %debug中,可以用b 12在第12行设 ...

  8. Getting Started With Hazelcast 读书笔记(第七章)

    第七章 部署策略 Hazelcast具有适应性,能根据不同的架构和应用进行特定的部署配置,每个应用可以根据具体情况选择最优的配置: 数据与应用紧密结合的模式(重点,of就是这种) 胖客户端模式(最好用 ...

  9. 《利用python进行数据分析》读书笔记--第六章 数据加载、存储与文件格式

    http://www.cnblogs.com/batteryhp/p/5021858.html 输入输出一般分为下面几类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据.利用Web API ...

随机推荐

  1. Ubantu Linux 环境下编译c++程序

    先在文件中新建一个a.cpp文件,在里面编写程序, 然后打开终端输入下面命令即可; $ g++ a.cpp -o b ///编译a.cpp 然后把编译之后的.exe文件存入b中 $ ./b ///执行 ...

  2. jquery easyui tree的全选与反选

    //全选反选 //参数:selected:传入this,表示当前点击的组件 //treeMenu:要操作的tree的id:如:id="userTree" function tree ...

  3. 枚举Enum

    #region 根据枚举名称获取值或反之        /// <summary>        /// 根据枚举的名称,得到该枚中该名称对应的值        /// </summ ...

  4. Python学习【第五篇】循环语句

    Python循环语句 接下来将介绍Python的循环语句,程序在一般情况下是按顺序执行的. 编程语言提供了各种控制结构,允许更复杂的执行路径. 循环语句允许我们执行一个语句或语句组多次. Python ...

  5. 选择App开发外包时,你该了解哪些法律常识?

    随着App需求的激增,选择App外包服务的客户也多了起来.然而客户和开发方对于其中的法律条款却不甚了解,导致在服务过程中,时常会发生一些分歧和纠纷,最终致使项目搁浅. 为了普及App外包的法律常识,移 ...

  6. 如何删除NSDictionary或NSArray中的NSNull

    前段时间与某公司的技术交流,被问到一个问题,如何删除NSDictionary中的NSNull.当时在纸上写,以前太依赖Xcode编译器了,以至于方法名都写不全,最终也没写出来,我想我肯定被鄙视的体无完 ...

  7. Java jdbc 连接oracle之三(封装工具类)

    driver = oracle.jdbc.driver.OracleDriver url = jdbc:oracle:thin:@192.168.10.105:1521:orcl user = LF ...

  8. lua自定义迭代器

    迭代器 http://www.tutorialspoint.com/lua/lua_iterators.htm 迭代器能够让你遍历某个集合或者容器中的每一个元素. 对于lua来说, 集合通常指代 ta ...

  9. 新建一个angularjs+requirejs+bootstrap+typescript+gulp+vscode+git的项目

    环境 windows 10 准备工具 Visual Studio Code Node.js Git 需求 必须支持IE8 步骤开始: 执行命令行工具 mkdir Demo && cd ...

  10. 关于使用FusionCharts生成图表时出现invalid xml data错误提示的解决方法

    FusionCharts的确功能是够强大的.收集的功能估计更强大.在初次使用时,对着手册,一步一步操作,就是生成图表工具不成功.一直报"Invalid xml data"错误.后面 ...