《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)
http://www.cnblogs.com/batteryhp/p/5046433.html
5、示例:usda食品数据库
下面是一个具体的例子,书中最重要的就是例子。

#-*- encoding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame
import re
import json #加载下面30M+的数据
db = json.load(open('E:\\foods-2011-10-03.json'))
#print len(db)
#print type(db) #得到的db是个list,每个条目都是含有某种食物全部数据的字典
#print db[0] #这一条非常长
#print db[0].keys()
#nutrients 是keys中的一个key,它对应的值是有关食物营养成分的一个字典列表,很长……
#print db[0]['nutrients'][0]
#下面将营养成分做成DataFrame
nutrients = DataFrame(db[0]['nutrients']) #将字典列表直接做成DataFrame
#print nutrients.head()
#print type(db[0]['nutrients'])
info_keys = ['description','group','id','manufacturer']
info = DataFrame(db,columns = info_keys)
#print info
#查看分类分布情况
#print pd.value_counts(info.group)
#现在,为了将所有的营养数据进行分析,需要将所有营养成分整合到一个大表中,下面分几个步骤来完成
nutrients = [] for rec in db:
fnuts = DataFrame(rec['nutrients'])
fnuts['id'] = rec['id'] #广播
nutrients.append(fnuts)
nutrients = pd.concat(nutrients,ignore_index = True) #将列表连接起来,相当于rbind,把行对其连接在一起 #去重,这是数据处理的重要步骤
print nutrients.duplicated().sum()
nutrients = nutrients.drop_duplicates()
#由于nutrients与info有重复的名字,所以需要重命名一下info
#注意下面这样的命名方式
col_mapping = {'description':'food',
'group':'fgroup'}
#rename函数返回的是副本,需要copy = False
info = info.rename(columns = col_mapping,copy = False)
#print info.columns #查看一下列名
col_mapping = {'description':'nutrient','group':'nutgroup'}
nutrients = nutrients.rename(columns = col_mapping,copy = False)
#print nutrients.columns
#做完上面这些,显然我们需要将两个DataFrame合并起来
print nutrients.ix[:10,:]
#print info.id
ndata = pd.merge(nutrients,info,on = 'id',how = 'outer')
print ndata
print ndata.ix[3000]
#注意下面的处理方式很nice
result = ndata.groupby(['nutrient','fgroup'])['value'].quantile(0.5)
print result
result['Zinc, Zn'].order().plot(kind = 'barh')
plt.show()
#只要稍微动动脑子(作者不止一次说过了……额),就可以发现各营养成分最为丰富的食物是什么了
by_nuttriend = ndata.groupby(['nutgroup','nutrient'])
print by_nuttriend.head()
#注意下面取出最大值的方式
get_maximum = lambda x:x.xs(x.value.idxmax())
get_minimum = lambda x:x.xs(x.value.idxmin())
max_foods = by_nuttriend.apply(get_maximum)[['value','food']]
#让food小一点
max_foods.food = max_foods.food.str[:50]
print max_foods.head()
print max_foods.ix['Amino Acids']['food']
>>>
14179
nutrient nutgroup units value id
0 Protein Composition g 25.18 1008
1 Total lipid (fat) Composition g 29.20 1008
2 Carbohydrate, by difference Composition g 3.06 1008
3 Ash Other g 3.28 1008
4 Energy Energy kcal 376.00 1008
5 Water Composition g 39.28 1008
6 Energy Energy kJ 1573.00 1008
7 Fiber, total dietary Composition g 0.00 1008
8 Calcium, Ca Elements mg 673.00 1008
9 Iron, Fe Elements mg 0.64 1008
10 Magnesium, Mg Elements mg 22.00 1008
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns:
nutrient 375176 non-null values
nutgroup 375176 non-null values
units 375176 non-null values
value 375176 non-null values
id 375176 non-null values
food 375176 non-null values
fgroup 375176 non-null values
manufacturer 293054 non-null values
dtypes: float64(1), int64(1), object(6)
nutrient Glycine
nutgroup Amino Acids
units g
value 0.073
id 1077
food Spearmint, fresh
fgroup Spices and Herbs
manufacturer
Name: 3000
nutrient fgroup
Adjusted Protein Sweets 12.900
Vegetables and Vegetable Products 2.180
Alanine Baby Foods 0.085
Baked Products 0.248
Beef Products 1.550
Beverages 0.003
Breakfast Cereals 0.311
Cereal Grains and Pasta 0.373
Dairy and Egg Products 0.271
Ethnic Foods 1.290
Fast Foods 0.514
Fats and Oils 0.000
Finfish and Shellfish Products 1.218
Fruits and Fruit Juices 0.027
Lamb, Veal, and Game Products 1.408
...
Zinc, Zn Finfish and Shellfish Products 0.67
Fruits and Fruit Juices 0.10
Lamb, Veal, and Game Products 3.94
Legumes and Legume Products 1.14
Meals, Entrees, and Sidedishes 0.63
Nut and Seed Products 3.29
Pork Products 2.32
Poultry Products 2.50
Restaurant Foods 0.80
Sausages and Luncheon Meats 2.13
Snacks 1.47
Soups, Sauces, and Gravies 0.20
Spices and Herbs 2.75
Sweets 0.36
Vegetables and Vegetable Products 0.33
Length: 2246
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 467 entries, (u'Amino Acids', u'Alanine', 48) to (u'Vitamins', u'Vitamin K (phylloquinone)', 395)
Data columns:
nutrient 467 non-null values
nutgroup 467 non-null values
units 467 non-null values
value 467 non-null values
id 467 non-null values
food 467 non-null values
fgroup 467 non-null values
manufacturer 444 non-null values
dtypes: float64(1), int64(1), object(6)
value food
nutgroup nutrient
Amino Acids Alanine 8.009 Gelatins, dry powder, unsweetened
Arginine 7.436 Seeds, sesame flour, low-fat
Aspartic acid 10.203 Soy protein isolate
Cystine 1.307 Seeds, cottonseed flour, low fat (glandless)
Glutamic acid 17.452 Soy protein isolate
nutrient
Alanine Gelatins, dry powder, unsweetened
Arginine Seeds, sesame flour, low-fat
Aspartic acid Soy protein isolate
Cystine Seeds, cottonseed flour, low fat (glandless)
Glutamic acid Soy protein isolate
Glycine Gelatins, dry powder, unsweetened
Histidine Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
Isoleucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Leucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Lysine Seal, bearded (Oogruk), meat, dried (Alaska Na...
Methionine Fish, cod, Atlantic, dried and salted
Phenylalanine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Proline Gelatins, dry powder, unsweetened
Serine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food
[Finished in 14.1s]


《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)的更多相关文章
- 《利用Python进行数据分析》笔记---第6章数据加载、存储与文件格式
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 《利用Python进行数据分析》笔记---第5章pandas入门
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 《利用Python进行数据分析》笔记---第2章--1880-2010年间全美婴儿姓名
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 《利用Python进行数据分析》笔记---第2章--来自bit.ly的1.usa.gov数据
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- 【python】《利用python进行数据分析》笔记
[第三章]ipython C-a 到行首 C-e 到行尾 %timeit 测量语句时间,%time是一次,%timeit是多次. %pdb是自动调试的开关. %debug中,可以用b 12在第12行设 ...
- Getting Started With Hazelcast 读书笔记(第七章)
第七章 部署策略 Hazelcast具有适应性,能根据不同的架构和应用进行特定的部署配置,每个应用可以根据具体情况选择最优的配置: 数据与应用紧密结合的模式(重点,of就是这种) 胖客户端模式(最好用 ...
- 《利用python进行数据分析》读书笔记--第六章 数据加载、存储与文件格式
http://www.cnblogs.com/batteryhp/p/5021858.html 输入输出一般分为下面几类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据.利用Web API ...
随机推荐
- 论文笔记(1)——《Where's Wally?Precise User Discovery Attacks in Location Proximity Services》
Abstract: 位置相近服务在社交和移动网络的广泛使用是基于可用性和用户隐私的平衡,但引发了三角定位攻击的风险.文章系统化地讨论了此类攻击的防范,包括问题在不同临近模型下的形式化,针对不同模型的有 ...
- 群晖SVN Server远程访问
打开路由器访问界面 选择转发规则->端口映射-新建 在弹出的界面中填写相应的端口号了内网ip 填写svn所在地址的IP,比如:192.168.30.2 添加映射端口,比如svn的默认端口是330 ...
- form 提交数组的一些trick
在给服务器传值时form利用 $.post( "/member/member/book/" + event_id, { tickets: tickets, csrf_ppw_tok ...
- C语言如何开发简单的插件
linux 通过dlopen来实现: #include "polygon.h" #include <stdlib.h> #include <dlfcn.h> ...
- iOS导航栏的正确隐藏方式【转】
简介:在项目中经常碰到首页顶部是无限轮播,需要靠最上面显示.有的设置导航栏为透明等一系列的方法,这个可以借助第三方.或者干脆简单粗暴的直接隐藏掉导航栏.可是push到下一个页面的时候是需要导航栏的,如 ...
- vim - char code and charset
In normal mode, type ga to display the decimal and hex values for the character under the cursor, or ...
- CSS 的定位方式和含义
CSS 的定位方式和含义 总结一下 CSS 的定位方式.CSS 的定位 position 是处理页面布局时非常重要的属性. CSS 中有 3 种基本的定位机制:普通流.浮动和绝对定位. 在没有指定的情 ...
- leetcode 28
题目描述: Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if ...
- SLP alpha 阶段总结
这学期快结束了,SLP的alpha阶段也结束了.在alpha版中,我实现了SLP的基础练习模块和全局设置模块,其他几个模块由于能力有限.时间有限而没有实现. 其中基础练习模块目前只能支持4/4拍,有三 ...
- Rational Rose2007下载安装教程以及问题处理
Rational Rose2007详细安装步骤 学习了UML,那么Rational rose画图软件当然就是必不可少的了.我的电脑是win7 64位的系统.下面的链接是安装软件以及破解方法.该软件是B ...