Leetcode: Convex Polygon
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex (Convex polygon definition). Note: There are at least 3 and at most 10,000 points.
Coordinates are in the range -10,000 to 10,000.
You may assume the polygon formed by given points is always a simple polygon (Simple polygon definition). In other words, we ensure that exactly two edges intersect at each vertex, and that edges otherwise don't intersect each other.
Example 1: [[0,0],[0,1],[1,1],[1,0]] Answer: True
Explanation:
Example 2: [[0,0],[0,10],[10,10],[10,0],[5,5]] Answer: False
Explanation:
https://discuss.leetcode.com/topic/70706/beyond-my-knowledge-java-solution-with-in-line-explanation
The key observation for convexity is that vector pi+1-pi always turns to the same direction to pi+2-pi formed by any 3 sequentially adjacent vertices, i.e., cross product (pi+1-pi) x (pi+2-pi) does not change sign when traversing sequentially along polygon vertices.
Note that for any 2D vectors v1, v2,
- v1 x v2 = det([v1, v2])
which is the determinant of 2x2 matrix [v1, v2]. And the sign of det([v1, v2]) represents the positive z-direction of right-hand system from v1 to v2. So det([v1, v2]) ≥ 0 if and only if v1 turns at most 180 degrees counterclockwise to v2.
public class Solution {
public boolean isConvex(List<List<Integer>> points) {
// For each set of three adjacent points A, B, C, find the cross product AB · BC. If the sign of
// all the cross products is the same, the angles are all positive or negative (depending on the
// order in which we visit them) so the polygon is convex.
boolean gotNegative = false;
boolean gotPositive = false;
int numPoints = points.size();
int B, C;
for (int A = 0; A < numPoints; A++) {
// Trick to calc the last 3 points: n - 1, 0 and 1.
B = (A + 1) % numPoints;
C = (B + 1) % numPoints;
int crossProduct =
crossProductLength(
points.get(A).get(0), points.get(A).get(1),
points.get(B).get(0), points.get(B).get(1),
points.get(C).get(0), points.get(C).get(1));
if (crossProduct < 0) {
gotNegative = true;
}
else if (crossProduct > 0) {
gotPositive = true;
}
if (gotNegative && gotPositive) return false;
}
// If we got this far, the polygon is convex.
return true;
}
// Return the cross product AB x BC.
// The cross product is a vector perpendicular to AB and BC having length |AB| * |BC| * Sin(theta) and
// with direction given by the right-hand rule. For two vectors in the X-Y plane, the result is a
// vector with X and Y components 0 so the Z component gives the vector's length and direction.
private int crossProductLength(int Ax, int Ay, int Bx, int By, int Cx, int Cy)
{
// Get the vectors' coordinates.
int ABx = Bx - Ax;
int ABy = By - Ay;
int BCx = Cx - Bx;
int BCy = Cy - By;
// Calculate the Z coordinate of the cross product.
return (ABx * BCy - ABy * BCx);
}
}
Leetcode: Convex Polygon的更多相关文章
- [LeetCode] Convex Polygon 凸多边形
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- 【LeetCode】469. Convex Polygon 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 计算向量夹角 日期 题目地址:https://leet ...
- HOJ 13101 The Triangle Division of the Convex Polygon(数论求卡特兰数(模不为素数))
The Triangle Division of the Convex Polygon 题意:求 n 凸多边形可以有多少种方法分解成不相交的三角形,最后值模 m. 思路:卡特兰数的例子,只是模 m 让 ...
- ACM训练联盟周赛 G. Teemo's convex polygon
65536K Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo co ...
- HDU 4195 Regular Convex Polygon
思路:三角形的圆心角可以整除(2*pi)/n #include<cstdio> #include<cstring> #include<iostream> #incl ...
- HUNAN 11562 The Triangle Division of the Convex Polygon(大卡特兰数)
http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11562&courseid=0 求n边形分解成三角形的 ...
- HNU 13101 The Triangle Division of the Convex Polygon 组合数的因式分解求法
题意: 求第n-2个Catalan数 模上 m. 思路: Catalan数公式: Catalan[n] = C(n, 2n)/(n+1) = (2n)!/[(n+1)!n!] 因为m是在输入中给的,所 ...
- POJ 3410 Split convex polygon(凸包)
题意是逆时针方向给你两个多边形,问你这两个多边形通过旋转和平移能否拼成一个凸包. 首先可以想到的便是枚举边,肯定是有一对长度相同的边贴合,那么我们就可以n2枚举所有边对,接下来就是旋转点对,那么假设多 ...
- HDU4195 Regular Convex Polygon (正多边形、外接圆)
题意: 给你正n边形上的三个点,问n最少为多少 思路: 三个点在多边形上,所以三个点的外接圆就是这个正多边形的外接圆,余弦定理求出每个角的弧度值,即该角所对边的圆周角,该边对应的圆心角为圆心角的二倍. ...
随机推荐
- Sharepoint + Office Infopart + Quick Apps for Sharepoint搭建无纸化工作平台
项目背景: 某大型外企各分部通过互联网专线统一域环境,Exchange邮件系统,Sharepoint平台及依赖环境已经购买并搭建起来,Dell Quick app for Sharepoint已购卖并 ...
- JS:XML
一 IE中的XML //1.创建XMLDOM对象 //创建XMLDOM对象 var xmlDom = new ActiveXObject("MSXML2.DOMDocument.6.0&qu ...
- Java_动态重新加载Class机制
Java动态重新加载Class 项目中使用到了动态重新加载Class的机制,作用是让一些代码上线之前可以在线上环境测试一下,当然,这是非常不好的测试机制,我刚来的时候也为这种机制感到惊讶—怎么可以在线 ...
- java分享第七天-01(Hashmap和Hashtable的区别&Property)
一.Hashmap和Hashtable的区别 1 主要:Hashtable线程安全,同步,效率相对低下 HashMap线程不安全,非同步,效率相对高 2 父类:Hashtable是Dictionary ...
- 触屏手机3G网站设计
随着智能手机iphone和Android的热潮,衍生出基于Safari和Chrome浏览器的触屏手机网站Touch Screen Mobile Website. 触屏手机网站在中国还属于起步阶段,从行 ...
- PHP编程效率的20个要点
用单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量,单引号则 不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的“函数” 用 单引号代替双引 ...
- 【资源】HTML5工具篇:10个营销人也能轻松使用的在线编辑平台
一 3, 2015 in 资源 作者:Teeya 2014年,HTML5 页面作为营销界新宠儿,“多快好省”的杰出代表,其灵活性高.开发成本低且制作周期短的种种特性使其在移动营销领域大放异彩. 此前, ...
- Oracle数据库字符集试验
对于初学者我们可以理解字符集就是一种字符编码方式,试想人可以直接语言进行交流,使用文字进行记录,而计算机却不认得我们人类创立的文字,计算机只认得0和1这样的二进制代码.当我们要通过计算机记录文字信息的 ...
- 客户端JavaScript-如何执行
客户端JavaScript程序有四部分:内联脚本.HTML事件处理程序.URL中的JavaScript.外联脚本:所有这些单独的代码共用同一个全局Window对象,它们可以看到相同的Document对 ...
- 本周psp
本周PSP 类别 内容 开始时间 中止时间 终止时间 总用时 产品计划会议 定义产品的用户需求,以及从这个产品中得到什么.解决啥问题 18:00 0 20:00 120分钟 撰写博客 会议记录与个 ...
Example 2: [[0,0],[0,10],[10,10],[10,0],[5,5]]
Answer: False 