CVPR 2011 Global contrast based salient region detection
Two salient region detection methods are proposed in this paper: HC AND RC
HC: Histogram based contrast
1. Primary method
It is simply to calculate the saliency of each color in the input image, where each pixel's saliency is defined using its color contrast to all other pixels in the image in L*a*b space:

The above equation can be expanded as,

where N is the number of pixels. Therefore we can conclude that the same color have the same saliency, so saliency value for each color is,

n is the number of distinct pixel colors,
is the probability of the corresponding pixel color in the image I.
2. Speeding up strategy
To reduce the number of colors from 256^3 to 12^3 = 1728, and finally to n = 85 colors in this post.
3. Color space smoothing
In order to reduce noisy saliency results caused by such randomness. We replace the saliency value of each color by the weighted average of the saliency values of similar colors. We choose m = n/4 nearsest colors to refine each color.

See the original paper for the detail of this equation.

RC: Region based contrast
1. Segment the input image into regions using [45](see the original paper)
2. Build the color histogram for each region
3. For a region r_k, we compute its saliency value by measuring its color contrast to all other regions in the image,

where
is the number of pixels of region r_i, designed to emphasize color contrast to bigger regions, and

f(c_k,i) is the probability of the i-th color among all n_k colors in the k-th region, used to emphasize the color differences between dominant colors.
4. Spatially weighted region contrast
We now can incorporate spatial information to the above equation to increase the effects of closer regions and decrease the farther ones.

is the spatial distance between the two regions.
controls the strength of spatial information, the bigger value make less effect of the close regions relatively,
is a spatial prior weighting term similar to center bias.
5. Iteratively segmentation using graph-cut.
Dilation and erosion after each iteration. The region inside the eroded region is set to foreground, and the remaining areas are set to unknown.

However, the (f) is not understood... ≡(▔﹏▔)≡
CVPR 2011 Global contrast based salient region detection的更多相关文章
- Global Contrast based Salient Region Detection (Ming ming Cheng)
abstract: Automatic estimation of salient object regions across images, without any prior assumption ...
- Frequency-tuned Salient Region Detection MATLAB代码出错修改方法
论文:Frequency-tuned Salient Region Detection.CVPR.2009 MATLAB代码运行出错如下: Error using makecform>parse ...
- (不断更新)关于显著性检测的调研-Salient Object Detection: A Survey
<Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文 ...
- Minimum Barrier Salient Object Detection at 80 FPS 论文阅读笔记
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- 基于预计算的全局光照(Global Illumination Based On Precomputation)
目录 基于图像的光照(Image Based Lighting,IBL) The Split Sum Approximation 过滤环境贴图 预计算BRDF积分 预计算辐射度传输(Precomput ...
- 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...
- 基于屏幕空间的实时全局光照(Real-time Global Illumination Based On Screen Space)
目录 Reflective Shadow Maps(RSM) RSM 的重要性采样 RSM 的应用与缺陷 Screen Space Ambient Occulsion(SSAO) SSAO Blur ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- 目标检测之显著区域检测---国外的一个图像显著区域检测代码及其效果图 saliency region detection
先看几张效果图吧 效果图: 可以直接测试的代码: 头文件: // Saliency.h: interface for the Saliency class.////////////////////// ...
随机推荐
- 实现Cookie跨域共享
实现原理:cookie是不能跨域访问的,但是在二级域名是可以共享cookie的 概念说明:站点1=a.abc.com 站点2=b.abc.com 实现步骤:1. 配置两个站点的webconfig ...
- Nginx去除版本号
1.在配置文件中的 http节点中加入server_tokens off; 2.更改源码隐藏nginx软件的名称 1). 查看Nginx编译的参数/usr/local/nginx/sbin/nginx ...
- 【学】jQuery的源码思路1——后代选择器
jQuery的源码思路1--后代选择器 这里探讨一下jQuery中后代选择器的封装原理,并自己写一下 getEle('#div1 ul li .box');接受的参数就是个后代选择器,类似于这样: # ...
- 查看sql语句执行的消耗
set statistics profile on set statistics io on set statistics time on go <这里写上你的语句...> go set ...
- 源码阅读笔记 - 2 std::vector (2) 关于Allocator Aware Container特性
所有的STL容器,都保存一个或默认,或由用户提供的allocator的实例,用来提供对象内存分配和构造的方法(除了std::array),这样的容器,被称作Allocator Aware Contai ...
- Druid数据库连接池配置
DRUID是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0.DBCP.PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB ...
- C#通过属性名称获取(读取)属性值的方法 z
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Prop ...
- 【javascript杂谈】你所不知道的replace函数
前言 最近在做面试题的时候总会用到这个函数,这个函数总是和正则表达式联系到一起,并且效果很是不错,总能很简单出色的完成字符串的实际问题,大家肯定都会使用这个函数,像我一样的初学者可能对这个函数的了解还 ...
- percent的用法
select*from test; 先查询所有的结果一共是8条记录 select top(50) percent *from test; 则只查询该表中百分之50的结果集
- [转]javascript eval函数解析json数据时为什加上圆括号eval("("+data+")")
javascript eval函数解析json数据时为什么 加上圆括号?为什么要 eval这里要添加 “("("+data+")");//”呢? 原因在于: ...