caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel
---
name: BAIR/BVLC CaffeNet Model
caffemodel: bvlc_reference_caffenet.caffemodel
caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
license: unrestricted
sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46
caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077
--- This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html).
It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: - not training with the relighting data-augmentation;
- the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). This model is snapshot of iteration 310,000.
The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328.
This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop.
(Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) This model was trained by Jeff Donahue @jeffdonahue ## License This model is released for unrestricted use.
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/2.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ----------
0.3411 - "n03676483 lipstick, lip rouge"
0.1024 - "n03325584 feather boa, boa"
0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle"
0.0734 - "n02786058 Band Aid"
0.0601 - "n04357314 sunscreen, sunblock, sun blocker" 翻译: 口红,口红

whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/3.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ----------
0.4030 - "n02883205 bow tie, bow-tie, bowtie"
0.3799 - "n04350905 suit, suit of clothes"
0.0473 - "n02865351 bolo tie, bolo, bola tie, bola"
0.0131 - "n04591157 Windsor tie"
0.0114 - "n02786058 Band Aid"
领结,领带,领结

caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel的更多相关文章
- bvlc_reference_caffenet.caffemodel
#uncoding:utf-8 # set up Python environment: numpy for numerical routines, and matplotlib for plotti ...
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe fine-tuning 微调网络
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的De ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- caffe使用
训练时, solver.prototxt中使用的是train_val.prototxt ./build/tools/caffe/train -solver ./models/bvlc_referenc ...
- 71 mac boook pro 无 gpu 下caffe 安装
71 mac boook pro 无 gpu 下caffe 安装 1.首先安装homebrew工具,相当于Mac下的yum或apt ruby -e "$(curl -fsSL https:/ ...
- Caffe学习系列(13):对训练好的模型进行fine-tune
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...
- Caffe学习系列(10):命令行解析
训练网络命令: sudo sh ./build/tools/caffe train --solver=examples/mnist/train_lenet.sh 用预先训练好的权重来fine-tuni ...
随机推荐
- why switch kernel mode and user mode expensive
Because that means context switching(save context, restore context)
- [TYVJ1930]编年史
现在 applepi 手上有一本十分古老的编年史,这本史书记录了很多著名的历史事件.于是applepi 有了一个奇怪的想法……他想知道那些有名的历史事件都是在星期几发生的.现在轮到你了,你要帮助app ...
- ThreadPool怎样判断子线程全部执行完毕
原文发布时间为:2010-10-27 -- 来源于本人的百度文章 [由搬家工具导入] 1、先来看看这个 http://hi.baidu.com/handboy/blog/item/160e9697fd ...
- sgu 275 To xor or not to xor 线性基 最大异或和
题目链接 题意 给定\(n\)个数,取其中的一个子集,使得异或和最大,求该最大的异或和. 思路 先求得线性基. 则求原\(n\)个数的所有子集的最大异或和便可转化成求其线性基的子集的最大异或和. 因为 ...
- 【Visual Studio】Visual Studio 2010 "LNK1123: 转换到 COFF 期间失败: 文件无效或损坏" 的解决方法
1.将 项目|项目属性|配置属性|连接器|清单文件|嵌入清单 “是”改为“否”. 2.找到 C:\Windows\winsxs\x86_netfx-cvtres_for_vc_and_vb_b03f5 ...
- Android,一条线串联实心圆布局
最近遇到一个简单的布局,不是listview的形式.就只是单纯的下图这种: 此界面布局代码: <?xml version="1.0" encoding="utf-8 ...
- [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset
The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...
- hdu 4823 Energy Conversion 构造
题目链接:HDU - 4823 魔法师百小度也有遇到难题的时候——现在,百小度正在一个古老的石门面前,石门上有一段古老的魔法文字,读懂这种魔法文字需要耗费大量的能量和大量的脑力.过了许久,百小度终于读 ...
- Nginx 初探
Nginx简介 Nginx(engine X)是一个开源.轻量级.高性能的HTTP和反向代理服务器,可以代理HTTP. IMAP/POP3/SMTP和TCP/UDP协议:其特点是占用内存少,并发能力强 ...
- MySQL复制表结构和内容到另一张表(转)
MySQL不要看它小,一个开源的产物,要学习它的东西真的很多.而它的一切是SQL Server无法比拟的. 复制表结构及数据到新表 create table 新表 select * from 旧表 只 ...