caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel
---
name: BAIR/BVLC CaffeNet Model
caffemodel: bvlc_reference_caffenet.caffemodel
caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
license: unrestricted
sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46
caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077
--- This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html).
It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: - not training with the relighting data-augmentation;
- the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). This model is snapshot of iteration 310,000.
The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328.
This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop.
(Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) This model was trained by Jeff Donahue @jeffdonahue ## License This model is released for unrestricted use.
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/2.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ----------
0.3411 - "n03676483 lipstick, lip rouge"
0.1024 - "n03325584 feather boa, boa"
0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle"
0.0734 - "n02786058 Band Aid"
0.0601 - "n04357314 sunscreen, sunblock, sun blocker" 翻译: 口红,口红
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/3.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ----------
0.4030 - "n02883205 bow tie, bow-tie, bowtie"
0.3799 - "n04350905 suit, suit of clothes"
0.0473 - "n02865351 bolo tie, bolo, bola tie, bola"
0.0131 - "n04591157 Windsor tie"
0.0114 - "n02786058 Band Aid"
领结,领带,领结
caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel的更多相关文章
- bvlc_reference_caffenet.caffemodel
#uncoding:utf-8 # set up Python environment: numpy for numerical routines, and matplotlib for plotti ...
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe fine-tuning 微调网络
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的De ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- caffe使用
训练时, solver.prototxt中使用的是train_val.prototxt ./build/tools/caffe/train -solver ./models/bvlc_referenc ...
- 71 mac boook pro 无 gpu 下caffe 安装
71 mac boook pro 无 gpu 下caffe 安装 1.首先安装homebrew工具,相当于Mac下的yum或apt ruby -e "$(curl -fsSL https:/ ...
- Caffe学习系列(13):对训练好的模型进行fine-tune
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...
- Caffe学习系列(10):命令行解析
训练网络命令: sudo sh ./build/tools/caffe train --solver=examples/mnist/train_lenet.sh 用预先训练好的权重来fine-tuni ...
随机推荐
- 向量内积(bzoj 3243)
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- Mongoose 表实例
/********** 用户表 BY Jaysir 2015.6.21 *********** *********** 可搜索以下关键词来查看未实现功能 *********** *********** ...
- 记忆泛型约束where
原文发布时间为:2011-03-29 -- 来源于本人的百度文章 [由搬家工具导入] http://msdn.microsoft.com/en-us/library/d5x73970.aspx
- Page_Load与Page_PreRender的执行顺序
原文发布时间为:2009-10-25 -- 来源于本人的百度文章 [由搬家工具导入] Page_PreRender 服务器控件将要呈现给其包含的 控件时发生。简单的理解为page中的控件渲染调用此事件 ...
- Java中的IO基本用法
先贴一下我在作业中用到的三种文件输入辅助类.三种文件输出辅助类 public class BuffIn implements InHelp{ private BufferedReader buffer ...
- HTML 文档之 Head 最佳实践
语言 在 html 标签中通过 lang 属性进行明确的语言声明,将会有助于翻译,英文.简体中文和繁体中文网页所属性值如下: <html lang="en"> < ...
- VIM使用技巧3
假如有如下代码: var foo = "method("+argument1+","+argument2+")" 任务:在每个“+”前后各 ...
- VIM的修炼等级
用vim 快两年了 看过教程也不少,总的来说还是得自己多练习,当自己觉得有需要的时候,再添加功能.这里分享个看过的最好的教程,出自贴吧的某个朋友,写的很好 零 学会盲打 壹 配置文件先从最简开始,在 ...
- 域名解析系统DNS诊断命令nslookup详解【转】
转自:http://www.renhaibo.com/archives/29.html Ping指令我们很熟悉了,它是一个检查网络状况的命令,在输入的参数是域名的情况下会通过DNS进行查询,但只能查询 ...
- depletion mosfet 的 depletion 解釋
Origin mosfet 除了有 n channel 及 p channel 外, 還分為 enhanced 及 depletion 兩種, 引起我注意的是, depletion 代表什麼, Exp ...