caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel
---
name: BAIR/BVLC CaffeNet Model
caffemodel: bvlc_reference_caffenet.caffemodel
caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
license: unrestricted
sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46
caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077
--- This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html).
It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: - not training with the relighting data-augmentation;
- the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). This model is snapshot of iteration 310,000.
The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328.
This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop.
(Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) This model was trained by Jeff Donahue @jeffdonahue ## License This model is released for unrestricted use.
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/2.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ----------
0.3411 - "n03676483 lipstick, lip rouge"
0.1024 - "n03325584 feather boa, boa"
0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle"
0.0734 - "n02786058 Band Aid"
0.0601 - "n04357314 sunscreen, sunblock, sun blocker" 翻译: 口红,口红

whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/3.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ----------
0.4030 - "n02883205 bow tie, bow-tie, bowtie"
0.3799 - "n04350905 suit, suit of clothes"
0.0473 - "n02865351 bolo tie, bolo, bola tie, bola"
0.0131 - "n04591157 Windsor tie"
0.0114 - "n02786058 Band Aid"
领结,领带,领结

caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel的更多相关文章
- bvlc_reference_caffenet.caffemodel
#uncoding:utf-8 # set up Python environment: numpy for numerical routines, and matplotlib for plotti ...
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe fine-tuning 微调网络
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的De ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- caffe使用
训练时, solver.prototxt中使用的是train_val.prototxt ./build/tools/caffe/train -solver ./models/bvlc_referenc ...
- 71 mac boook pro 无 gpu 下caffe 安装
71 mac boook pro 无 gpu 下caffe 安装 1.首先安装homebrew工具,相当于Mac下的yum或apt ruby -e "$(curl -fsSL https:/ ...
- Caffe学习系列(13):对训练好的模型进行fine-tune
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...
- Caffe学习系列(10):命令行解析
训练网络命令: sudo sh ./build/tools/caffe train --solver=examples/mnist/train_lenet.sh 用预先训练好的权重来fine-tuni ...
随机推荐
- Python 使用cx_freeze 生成exe文件【转】
Python 使用cx_freeze 生成exe文件 在python中比较常用的python转exe方法有三种,分别是cx_freeze,py2exe,PyInstaller.py2exe恐怕是三 ...
- 17.2.10 NOIP模拟赛 藏妹子之处(excel)
藏妹子之处(excel) 问题描述: 今天CZY又找到了三个妹子,有着收藏爱好的他想要找三个地方将妹子们藏起来,将一片空地抽象成一个R行C列的表格,CZY要选出3个单元格.但要满足如下的两个条件: ( ...
- android基本控件学习-----ToggleButton&Switch
ToggleButton(开关按钮)和Switch(开关)讲解: 一.核心属性讲解: (1)ToggleButton textOn:按钮被选中的时候文字显示 textOff:按钮没有被选中的时候文字显 ...
- 《手把手教你学C语言》学习笔记(10)--- 程序的循环控制
C语言程序设计中,有些代码需要重复执行很多次,循环主要有三类: 一.for循环 1.基本格式为:for(表达式1:表达式2:表达式3){ //表达式1:循环变量赋初值 //表达式2:循环变量满足的条件 ...
- Centos7下实现多虚拟机互信
假设CentOS 7三台虚拟机A(192.168.111.10).B(192.168.111.11).C(192.168.111.12),需要保证三台虚拟机之间网络的连通性. 操作步骤: 一.在A机上 ...
- JavaScript 深克隆
深克隆 function judgeType(arg){//判断js数据类型 return Object.prototype.toString.call(arg).slice(8,-1); } fun ...
- jeffy-vim-v2.8.tgz
vim 配置 jeffy-vim-v2.8.tgz
- dml语句就是你常写的sql语句,增删改查
dml语句就是你常写的sql语句,增删改查
- 检查iOS app 是否升级为新版本
之前我帮某公司做的一个iOS app,升级的时候发现闪退问题.后来检查是因为升级的时候数据库出现一点小问题导致对象为空. 下面这个代码可以检测程序是否更新了,从而进行相关处理: 1 2 3 4 5 6 ...
- pair类型
pair是一个模板数据类型,其中包含两个数据值,两个数据值可以不同 如 pair<int,string>a(2,"fgh");则a是一个pair类型,它包括两个数据,第 ...