POJ3071 Football 【概率dp】
题目
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
输入格式
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.
输出格式
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.
输入样例
Language:
Football
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6356 Accepted: 3245
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
输出样例
2
提示
In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
P(2 wins) = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
= p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.
题解
简单来说就是一个淘汰制赛制,给出每对选手之间的胜率,求胜率最大的选手
我们令\(f[i][j]\)表示i号选手,第j轮获胜的概率
第j轮要获胜,首先第j - 1轮要获胜,还要击败第j轮的对手
那么就有\(f[i][j] = f[i]][j - 1] * \sum_{k \in opposite} win[i][k] * f[k][j - 1]\)
每次只需枚举区间内的对手累加概率就好了
\(O(n^3)\)
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1 << 8,maxm = 100005,INF = 1000000000;
double f[maxn][10];
double win[maxn][maxn];
int n,m;
int main(){
while (~scanf("%d",&m) && m >= 0){
n = 1 << m;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
scanf("%lf",&win[i][j]);
for (int i = 0; i < n; i++) f[i][0] = 1.0;
for (int j = 1; j <= m; j++){
for (int i = 0; i < n; i++){
f[i][j] = 0;
int b = i / (1 << j - 1),op = b ^ 1;
//printf("round %d id: %d block: %d\n",j,i,b);
for (int k = op * (1 << j - 1); k / (1 << j - 1) == op; k++)
f[i][j] += win[i][k] * f[k][j - 1];
f[i][j] *= f[i][j - 1];
}
}
int ans = 0;
for (int i = 1; i < n; i++) if (f[i][m] > f[ans][m]) ans = i;
//REP(i,n) printf("%.2lf ",f[i - 1][m]); puts("");
printf("%d\n",ans + 1);
}
return 0;
}
POJ3071 Football 【概率dp】的更多相关文章
- POJ3071:Football(概率DP)
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- [poj3071]football概率dp
题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] + = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...
- POJ3071 Football 概率DP 简单
http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...
- Football 概率DP poj3071
Footbal ...
- poj 3071 Football (概率DP水题)
G - Football Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- poj3071之概率DP
Football Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2667 Accepted: 1361 Descript ...
- POJ 3071 Football(概率DP)
题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...
- poj3071 Football(概率dp)
poj3071 Football 题意:有2^n支球队比赛,每次和相邻的球队踢,两两淘汰,给定任意两支球队相互踢赢的概率,求最后哪只球队最可能夺冠. 我们可以十分显然(大雾)地列出转移方程(设$f[ ...
- poj 3071 Football(概率dp)
id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...
- POJ 3071 Football (概率DP)
概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...
随机推荐
- UVA 11093 Just Finish it up 环形跑道 (贪心)
有一个环形跑道,上面有n个加油站,到i号加油站可以加pi的油,跑到下一站要花费qi的油,起点任意选,问是否有一个起点可跑完整个跑道. 从i开始跑,如果遇到某个站j不能跑了,那么从i到j之间的站开始跑, ...
- UVA1610 PartyGame 聚会游戏(细节题)
给出一组字符串D,要找一个字符串S使得D中一半小于等于S,另外一半大于S.输入保证一定有解.长度要尽量短,在此基础上字典序尽量小. 分类谈论,细节挺多的,比如'Z'. 其实直接暴就过了,没分类辣么麻烦 ...
- java8关于LocalDate,Date
关于java8中的新的时间日期类 public static void main(String[] args) { Date date = new Date(); LocalDate localDat ...
- java第八次作业:课堂上发布的前5张图片(包括匿名对象、单例模式恶汉式、自动生成对象、args[]数组使用、静态关键字)
- cocos2dx for lua 截屏功能
cocos2dx的utils类中包含截图功能,使用方法如下: cc.utils:captureScreen(function(successed,outputFile)--第一个参数是截图成功或者失败 ...
- MFC 菜单编程 -- 总结
菜单结构 一个菜单栏可以有若干个子菜单,而一个子菜单又可有若干个菜单项.对于菜单栏的子菜单,由左至右从0开始索引.对于特定的子菜单的菜单项,由上至下建立从0开始的索引.访问子菜单和菜单项,均可通过其索 ...
- Python自学笔记_
1. if语句 判断语句. 1 a=2 2 b=3 3 if a>b: 4 print("a>b") 5 else: 6 print("a<b" ...
- matplotlib学习记录 三
# 绘制自己和朋友在各个年龄的女友数量的折线图 from matplotlib import pyplot as plt # 让matplotlib能够显示中文 plt.rcParams['font. ...
- eclipse使用技巧的网站收集——转载(一)
Eclipse工具使用技巧总结(转载) 首先推荐一篇非常好的How to use eclipse文章 ,讲的是eclipse使用的方方面面,非常实用,推荐给大家! 一.常用快捷键:Ctrl+F11 运 ...
- C#语言入门
1.基础知识 2.数据类型 3.控制语句 4.