题形:另类快速幂

题意:

f(x) = K, x = 1

f(x) = (a*f(x-1) + b)%m , x > 1

Now, Your task is to calculate

( A^(f(1)) + A^(f(2)) + A^(f(3)) + ...... + A^(f(n)) ) modular P.

1 <= n <= 10^6

0 <= A, K, a, b <= 10^9

1 <= m, P <= 10^9

思路:

快速幂,求一个很快,但求多个,并不一定快。这里要求10^6次个,反而就很慢了。

所以,求单个的复杂度要比log(10^9)要小。

这里,有一个很棒的想法:用预处理换复杂度。

如果能算出A0~A10e9这么写所有,那么之后算单个复杂度就是1.很棒~当时预处理复杂度承受不了。

这里有个巧妙的方法:A10e10 = A10e5 * A10e5

所以,算出A0~A10e5,然后另B=A10e5, 算出B0~B10e5,之后算单个,复杂度就是2~棒!预处理复杂度被根号了~

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring> long long n, A, K, a, b, m, P;
long long p1[], p2[]; int main() {
int t;
scanf("%d", &t);
int cas = ;
while (t--) {
scanf("%lld%lld%lld%lld%lld%lld%lld", &n, &A, &K, &a, &b, &m, &P);
p1[] = ;
p1[] = A%P;
for (int i = ; i <= ; i++) {
p1[i] = (p1[i-]*p1[])%P;
}
p2[] = ;
p2[] = p1[];
for (int i = ; i <= ; i++) {
p2[i] = (p2[i-]*p2[])%P;
}
long long fx = K;
long long ans = ;
for (int i = ; i < n; i++) {
ans += p2[fx/]*p1[fx%];
ans %= P;
fx = (a*fx+b)%m;
} printf("Case #%d: %lld\n", cas++, ans);
}
return ;
}

UPC 2219: A^X mod P的更多相关文章

  1. upc.2219: A^X mod P(打表 && 超越快速幂(in some ways))

    2219: A^X mod P Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 417  Solved: 68 [Submit][Status][Web ...

  2. UPC 2959: Caoshen like math 这就是个水题

    http://acm.upc.edu.cn/problem.php?id=2959 这就是个水题,之所以要写这个题是感觉很有纪念意义 用力看就是盲……23333333333333333 这个题就是最小 ...

  3. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  4. UPC 2223: A-Number and B-Number(数位DP+二分)

    积累点: 1: (l&r)+((l^r)>>) == (l+r)/2 2: 注意判断现在是否有限制.当枚举下一个量时,是(isQuery && j==end),不要 ...

  5. upc组队赛3 Chaarshanbegaan at Cafebazaar

    Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...

  6. UPC 2019年第二阶段我要变强个人训练赛第十六场

    传送门: [1]:UPC比赛场 [2]:UPC补题场 F.gu集合(数论) •题目描述 题目描述: Dew有一个长为n的集合S. 有一天,他想选k个不同的元素出来做游戏. 但是Dew只有两只手,所以他 ...

  7. UPC个人训练赛第十五场(AtCoder Grand Contest 031)

    传送门: [1]:AtCoder [2]:UPC比赛场 [3]:UPC补题场 参考资料 [1]:https://www.cnblogs.com/QLU-ACM/p/11191644.html B.Re ...

  8. 函数mod(a,m)

    Matlab中的函数mod(a,m)的作用: 取余数 例如: mod(25,5)=0; mod(25,10)=5; 仅此.

  9. ORACLE 数据库 MOD 函数用法

    1.求2和1的余数. Select mod(2,1) from dual: 2能被1整除所以余数为0. 2.MOD(x,y)返回X除以Y的余数.如果Y是0,则返回X的值. Select mod(2,0 ...

随机推荐

  1. quartz 任务调度

    quartz 设置参数, 获取参数 在job中使用spring注入的service对象 循环获取所有的job 删除job @PersistJobDataAfterExecution @Disallow ...

  2. Python数据分析【炼数成金15周完整课程】

    点击了解更多Python课程>>> Python数据分析[炼数成金15周完整课程] 课程简介: Python是一种面向对象.直译式计算机程序设计语言.也是一种功能强大而完善的通用型语 ...

  3. CentOS 系统下Gitlab搭建与基本配置 以及代码备份迁移过程

    GitLab 是一个开源的版本管理系统,提供了类似于 GitHub 的源代码浏览,管理缺陷和注释等功能,你可以将代码免费托管到 GitLab.com,而且不限项目数量和成员数.最吸引人的一点是,可以在 ...

  4. Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分

    题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...

  5. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  6. git push后是空目录,且提示modified content, untracked content

    最近往自己的github传代码时,每一步都正常,但最后push上去之后是空目录,且在本地执行git status时提示: 后来发现是由于push的工程下本来就有个.git目录,所以才导致push上去的 ...

  7. nuc 第二届山西省大学生程序设计大赛 魔力手环

    problem 很妙啊--发现状态转移矩阵每一行都可以由上一行平移得到,每次只算第一行然后平移,\(O(n^3)\) 就变成了 \(O(n^2)\). #include <iostream> ...

  8. loj2001 「SDOI2017」树点涂色

    there #include <iostream> #include <cstdio> using namespace std; int n, m, dfn[100005], ...

  9. Selenium WebDriver-操作下拉框内容

    操作下拉框中的内容 #encoding=utf-8 import unittest import time import chardet from selenium import webdriver ...

  10. Maven项目下Tomcat插件选择方法

    1. 进入Tomcat官网:http://tomcat.apache.org/ 选择Maven plugin 2. 选择版本 3. 查看版本对应的插件版本: 有两种方式添加:如下图所示: