Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1646    Accepted Submission(s): 597

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input
4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1
 
Sample Output
20 no
13 no
20 yes
4 yes
 
题目大意:给一个N*M的正整数矩阵,Q条询问:给一个子矩阵的左上角跟右下角的坐标,求这个矩阵的元素最大值,若最大值与四个顶点的值有一个相等,输出max yes,否则输出max no。
 
分析:用二维RMQ离线处理,O(1)查询,手贱的把数组多开大了4跟1就超内存了。。。。。。这游戏真难。

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std; const int maxn=;
const int maxm=; int A[maxn][maxn],flag;
int d[maxn][maxn][maxm][maxm]; inline int max(int a,int b){ return a>b?a:b;} void RMQ_init(int n,int m)
{
int i,j,k,l;
for(i=;i<n;i++)
for(j=;j<m;j++) d[i][j][][]=A[i][j];
for(i=;(<<i)<=n;i++)
{
for(j=;(<<j)<=m;j++)
{
if(i== && j==) continue;
for(k=;k+(<<i)-<n;k++)
{
for(l=;l+(<<j)-<m;l++)
{
if(i== && j!=) d[k][l][i][j]=max(d[k][l][i][j-],d[k][l+(<<(j-))][i][j-]);
else if(i!= && j==) d[k][l][i][j]=max(d[k][l][i-][j],d[k+(<<(i-))][l][i-][j]);
else d[k][l][i][j]=max(d[k][l][i-][j-],max(d[k][l+(<<(j-))][i-][j-],
max(d[k+(<<(i-))][l][i-][j-],d[k+(<<(i-))][l+(<<(j-))][i-][j-])));
}
}
}
}
} int query(int lx,int ly,int rx,int ry)
{
int ri=floor(log(rx-lx+1.0)/log(2.0)+0.000001);
int ci=floor(log(ry-ly+1.0)/log(2.0)+0.000001);
int temp=d[lx][ly][ri][ci];
temp=max(temp,d[lx][ry-(<<ci)+][ri][ci]);
temp=max(temp,d[rx-(<<ri)+][ly][ri][ci]);
temp=max(temp,d[rx-(<<ri)+][ry-(<<ci)+][ri][ci]);
if(temp==A[lx][ly] || temp==A[lx][ry] ||
temp==A[rx][ly] || temp==A[rx][ry])
flag=;
return temp;
} int main()
{
int n,m,i,j,q,lx,ly,rx,ry,ans;
while(~scanf("%d %d",&n,&m))
{
for(i=;i<n;i++)
for(j=;j<m;j++) scanf("%d",&A[i][j]);
RMQ_init(n,m);
scanf("%d",&q);
while(q--)
{
scanf("%d %d %d %d",&lx,&ly,&rx,&ry);
lx--;ly--;rx--,ry--;
flag=;
ans=query(lx,ly,rx,ry);
printf("%d ",ans);
printf(flag?"yes\n":"no\n");
}
}
return ;
}


hdu 2888 二维RMQ的更多相关文章

  1. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  2. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  3. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  4. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  5. 二维RMQ hdu 2888

    题目:点这里 题意:给出一个n*m的矩阵,然后又Q个询问:每个询问有x1,y1,x2,y2,x1,y1为子矩阵的左上角坐标,x2,y2为右上角的坐标.求此子矩阵中元素最大值,判断最大值是否在子矩阵四个 ...

  6. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  7. hdu2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  8. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  9. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

随机推荐

  1. BigDecimal and double

    BigDecimal类 对于不需要任何准确计算精度的数字可以直接使用float或double,但是如果需要精确计算的结果,则必须使用BigDecimal类,而且使用BigDecimal类也可以进行大数 ...

  2. PAT (Basic Level) Practise (中文)- 1007. 素数对猜想 (20)

    http://www.patest.cn/contests/pat-b-practise/1007 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对 ...

  3. c++ 创建路径方法

    linux.unix平台 #include "stdio.h" #include "stdlib.h" #include <sys/types.h> ...

  4. cocos2d-x中的字符串操作

    1:循环体中字符串的构造.      通常用于多个有规律的文件的名字,诸如:[NSString stringWithFormat:@"filed.png",i].我们可以通过spr ...

  5. deque 用法

    引用博客:https://blog.csdn.net/zyq522376829/article/details/46801973 下面是那位大佬写的的笔记整理~~~~ deque - 双向队列 1.构 ...

  6. light oj 1104 Birthday Paradox (概率题)

    Sometimes some mathematical results are hard to believe. One of the common problems is the birthday ...

  7. UVa 10564 DP Paths through the Hourglass

    从下往上DP,d(i, j, k)表示第(i, j)个格子走到底和为k的路径条数. 至于字典序最小,DP的时候记录一下路径就好. #include <cstdio> #include &l ...

  8. OpenSSL SNI

    网站ssl检测工具 https://www.ssllabs.com/ssltest/analyze.html?d=gggl.houseoflux.com.cn https://myssl.com/  ...

  9. python学习-- Django model -class 主键自增问题

    转自:http://blog.csdn.net/mapoor/article/details/8609660 prize_id = models.IntegerField(primary_key=Tr ...

  10. Tinkoff Internship Warmup Round 2018 and Codeforces Round #475 (Div. 2)

    A. Splits time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...