[BZOJ 1475] 方格取数
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=1475
[算法]
首先将方格黑白染色 , 也就是说 , 如果(i + j)为奇数 , 这个点就是黑点 , 否则是白点
那么这个n * n的方格就被分为了两个集合 , 一个是黑点集合 , 一个是白点集合
如果选取一个黑点 , 造成影响的是四方向内的白点
如果选取一个白点 , 造成影响的是四方向内的黑点
考虑首先选取所有的点 , 然后去掉最小代价的点 , 并使方案合法
那么这就是一个最小割的经典模型 :
将源点向所有黑点连流量为权值的边
将所有白点向汇点连流量为权值的边
将所有黑点向四方向内的白点连流量为正无穷的边
求解这个图的最小割即可
时间复杂度 : O(dinic(N , M))
[代码]
#include<bits/stdc++.h>
using namespace std;
#define N 110
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int inf = 1e9;
const int dx[] = { , , - , };
const int dy[] = {- , , , }; struct edge
{
int to , w , nxt;
} e[N * N * ]; int n , m , S , T , tot;
int a[N][N];
int dep[N * N] , head[N * N]; template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline bool bfs(int s)
{
queue< int > q;
q.push(s);
memset(dep , , sizeof(dep));
dep[s] = ;
while (!q.empty())
{
int cur = q.front();
q.pop();
for (int i = head[cur]; i; i = e[i].nxt)
{
int v = e[i].to , w = e[i].w;
if (w > && dep[v] == -)
{
dep[v] = dep[cur] + ;
q.push(v);
if (v == T) return true;
}
}
}
return false;
}
inline int dinic(int u , int flow)
{
int rest = flow;
if (u == T)
return flow;
for (int i = head[u]; i && rest; i = e[i].nxt)
{
int v = e[i].to , w = e[i].w;
if (dep[v] == dep[u] + && w > )
{
int k = dinic(v , min(w , rest));
if (!k) dep[v] = ;
rest -= k;
e[i].w -= k;
e[i ^ ].w += k;
}
}
return flow - rest;
}
inline void addedge(int u , int v , int w)
{
++tot;
e[tot] = (edge){v , w , head[u]};
head[u] = tot;
++tot;
e[tot] = (edge){u , , head[v]};
head[v] = tot;
}
inline bool valid(int x , int y)
{
return x >= && x <= m && y >= && y <= n;
} int main()
{ read(m); n = m;
int cnt = ;
for (int i = ; i <= m; i++)
{
for (int j = ; j <= n; j++)
{
read(a[i][j]);
cnt += a[i][j];
}
}
S = n * m + , T = S + ;
tot = ;
for (int i = ; i <= m; i++)
{
for (int j = ; j <= n; j++)
{
if ((i + j) & )
addedge(S , (i - ) * n + j , a[i][j]);
else addedge((i - ) * n + j , T , a[i][j]);
}
}
for (int i = ; i <= m; i++)
{
for (int j = ; j <= n; j++)
{
for (int k = ; k < ; k++)
{
int x = i + dx[k] , y = j + dy[k];
if (valid(x , y) && (i + j) & )
addedge((i - ) * n + j , (x - ) * n + y , inf);
}
}
}
int ans = ;
while (bfs(S))
{
while (int flow = dinic(S , inf)) ans += flow;
}
printf("%d\n" , cnt - ans); return ;
}
[BZOJ 1475] 方格取数的更多相关文章
- BZOJ 1475: 方格取数( 网络流 )
本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...
- BZOJ 1475 方格取数(二分图最大点权独立集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1475 [题目大意] 给出一个n*n的方格,从中取一些不相邻的数字,使得和最大 [题解] ...
- bzoj P2045 方格取数加强版【最大费用最大流】
今天脑子不太清醒,把数据范围看小了一直TTTTLE-- 最大费用最大流,每个格子拆成两个(x,y),(x,y)',(x,y)向(x,y)'连一条费用a[x][y]流量1的边表示选的一次,再连一条费用0 ...
- [BZOJ1475]方格取数 网络流 最小割
1475: 方格取数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1025 Solved: 512[Submit][Status][Discuss] ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- NOIP200003方格取数
NOIP200003方格取数 难度级别: D: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 XYZ 是首师大附中信息技术团编 ...
- vijos 1563 疯狂的方格取数
P1653疯狂的方格取数 Accepted 标签:天才的talent[显示标签] 背景 Due to the talent of talent123,当talent123做完NOIP考了两次的二取 ...
- [HDU 1565+1569] 方格取数
HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
随机推荐
- boost exception jam0.exe 异常错误
在Windows 8 64 bit下执行boost_1_53_0的bootstrap.bat出现了jam0.exe执行错误 搜索网页发现需要修改两处文件: tools/build/v2/engine/ ...
- iOS集成百度地图方法步骤
前言:app中的导航功能越来越流行,现在我自己做的项目中也有此需求,做过了后记录下笔记. 由于源代码保密所以这里仅仅提供demo,下面是效果图 一:iOS地图SDK 1.打开 百度地图api链接 i ...
- 转: 基于netty+ protobuf +spring + hibernate + jgroups开发的游戏服务端
from: http://ybak.iteye.com/blog/1853335 基于netty+ protobuf +spring + hibernate + jgroups开发的游戏服务端 游戏服 ...
- background-attachment
CreateTime--2017年9月28日10:58:58 Author:Marydon background-attachment 1.定义 定义背景图片随滚动轴的移动方式(设置背景图像是否固 ...
- python(12)- 文件处理应用Ⅰ
一.读取文件,打印第三行时后面加入“徐亚平” 程序如下: count=0 with open("test",mode="r",encoding="ut ...
- php返回HTTP状态码
HTTP协议状态码,调用函数时候只需要将$num赋予一个下表中的已知值就直接会返回状态了.<?PHP /** * HTTP Protocol defined status codes* HTTP ...
- Python标准库:内置函数set([iterable])
本函数是从迭代对象生成集合.集合能够添加或删除元素. 样例: #set() tset = set([1, 2, 3, 3, 4, 5, 6, 6]) print(tset) tset.add(20) ...
- Vmware虚拟机安装XP系统
刚开始下载的雨林木风ghost镜像,首先是虚拟机无法自动识别系统版本.然后启动的时候也是无法从光驱启动,又接连下载了几个版本的系统镜像, 都是ghost的,都不好使,百度,偶然发现有人提了一句,需要用 ...
- Erlang function guards NOTE
Note: I've compared , and ; in guards to the operators andalso and orelse. They're not exactly the s ...
- ElasticSearch(一)什么是全文检索?
全文检索 全文检索,即倒排索引.