题目链接:

Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 32768/32768 K (Java/Others)

Problem Description
 
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
 
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
 
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
 
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
 
65.00
70.00
 
题意:
 
给了n个点的坐标和这个点的权值,问形成一棵树,这棵树上有一个条边,这条边的两个点的权值和比这棵树上除去这条边的所有边的和最大; 
 
思路:
 
先生成最小树,再枚举要消除的那条边,bfs找到消除这条边后生成的两棵子树里的最大权的点就是要重新连接的点了;
 
AC代码:
 
/*4081    452MS    13060K    2555 B    G++    2014300227*/
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
typedef long long ll;
const ll mod=1e9+;
const double PI=acos(-1.0);
int n,p[],vis[];
int findset(int x)
{
if(x==p[x])return x;
return p[x]=findset(p[x]);
}
void same(int x,int y)
{
int fx=findset(x),fy=findset(y);
if(fx!=fy)p[fx]=p[fy];
}
struct node
{
double x,y;
int pop;
};
node point[];
struct Edge
{
int l,r,pop;
double len;
}edge[N];
int cmp(Edge a,Edge b)
{
return a.len<b.len;
}
queue<Edge>qu;
vector<int>ve[];
int bfs(int num1,int num2)//bfs找两棵子树里权值最大的点;
{
memset(vis,,sizeof(vis));
vis[num2]=;
queue<int>q;
q.push(num1);
int mmax=;
while(!q.empty())
{
int fr=q.front();
q.pop();
mmax=max(mmax,point[fr].pop);
int si=ve[fr].size();
for(int i=;i<si;i++)
{
if(!vis[ve[fr][i]])
{
vis[ve[fr][i]]=;
q.push(ve[fr][i]);
}
}
}
return mmax;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int cnt=;
for(int i=;i<=n;i++)
{
ve[i].clear();
p[i]=i;
scanf("%lf%lf%d",&point[i].x,&point[i].y,&point[i].pop);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
edge[cnt].l=i;
edge[cnt].r=j;
edge[cnt].pop=point[i].pop+point[j].pop;
edge[cnt++].len=sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x)+(point[i].y-point[j].y)*(point[i].y-point[j].y));
}
}
sort(edge,edge+cnt,cmp);
double dis=;
for(int i=;i<cnt;i++)
{
if(findset(edge[i].l)!=findset(edge[i].r))
{
same(edge[i].l,edge[i].r);
dis+=edge[i].len;
qu.push(edge[i]);
ve[edge[i].l].push_back(edge[i].r);
ve[edge[i].r].push_back(edge[i].l);
}
}
//cout<<"@"<<endl;
double ans=;
while(!qu.empty())
{
// memset(vis,0,sizeof(vis));
int ls=qu.front().l,rs=qu.front().r;
int ans1=bfs(ls,rs);
int ans2=bfs(rs,ls);
ans=max(ans,(ans1+ans2)*1.0/(dis-qu.front().len));
qu.pop();
}
printf("%.2lf\n",ans);
}
return ;
}
 

hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  2. HDU 4081 Qin Shi Huang's National Road System 最小生成树

    分析:http://www.cnblogs.com/wally/archive/2013/02/04/2892194.html 这个题就是多一个限制,就是求包含每条边的最小生成树,这个求出原始最小生成 ...

  3. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  6. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  9. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

随机推荐

  1. SilverLight-DataBinding:二、Bingding to a Collection Objects(绑定一个集合对象)

    ylbtech-SilverLight-DataBinding: Bingding to a Collection Objects(绑定一个集合对象) 1.A, Building  a Data Ob ...

  2. 第五讲_图像识别之图像检测Image Detection

    第五讲_图像识别之图像检测Image Detection 目录 物体检测 ILSVRC竞赛200类(每个图片多个标签):输出类别+Bounding Box(x,y,w,h) PASCAL VOC 20 ...

  3. Flash中如何使用滤镜

    使用滤镜 应用或删除滤镜 复制和粘贴滤镜 为对象应用预设滤镜 启用或禁用应用于对象的滤镜 启用或禁用应用于对象的所有滤镜 创建预设滤镜库 对象每添加一个新的滤镜,在属性检查器中,就会将其添加到该对象所 ...

  4. java性能监控工具jps-windows

    jps Lists the instrumented Java Virtual Machines (JVMs) on the target system. This command is experi ...

  5. PHP如何学习?

    PHP 的学习,可以归纳为三个类型:      语言的基础语法学习,这些是 ifelse, while, switch, class, function, trait 等:  内置函数/类学习,这 ...

  6. react request.js 函数封装

    1.request.js  函数封装 import { Toast } from 'antd-mobile'; import axios from 'axios'; import store from ...

  7. h5调用手机照相机

    camera.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...

  8. MOS管驱动详解

    1.常用的几种电平转换方案 2.三极管的电平转换及驱动电路分析 3.三级管老怀 4.关于MOSFET管驱动电路总结 5.一个IIC的5V和3.3V电平转换的经典电路分享 6.mos 7.mos应用 8 ...

  9. DB 【ACID】

    http://blog.csdn.net/shuaihj/article/details/14163713 http://blog.csdn.net/dief913975849/article/det ...

  10. idea常用的快捷命令

    main方法: psvm System.out.println(): sout