C. A Twisty Movement

time limit per test1 second

memory limit per test256 megabytes

Problem Description

A dragon symbolizes wisdom, power and wealth. On Lunar New Year’s Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, …, an.

Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, …, ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

A non-decreasing subsequence is a sequence of indices p1, p2, …, pk, such that p1 < p2 < … < pk and ap1 ≤ ap2 ≤ … ≤ apk. The length of the subsequence is k.

Input

The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

The second line contains n space-separated integers, describing the original sequence a1, a2, …, an (1 ≤ ai ≤ 2, i = 1, 2, …, n).

Output

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

Examples

input

4

1 2 1 2

output

4

input

10

1 1 2 2 2 1 1 2 2 1

output

9

Note

In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.


解题心得:

  1. 题意很简单就是输出最长不递减子序列的长度。
  2. 读错题了啊,把子序列看成子区间弄错了,。
  3. 就是一个dp加一点思维
    • 先求出1的前缀和,2的后缀和
    • dp[i][j][1]代表在区间(i,j)之间以1结尾的最长不递增子序列的长度。

      dp[i][j][2]代表在区间(i,j)之间以2结尾的最长不递增子系列的长度。
    • 状态转移方程式就很容易出来了dp[i][j][1] = max(dp[i][j-1][1],dp[i][j-1][2]) + (num[j] == 1)

      dp[i][j][2] = dp[i][j-1][2] + (num[j] == 2)
  4. 至于为什么要求不递增的dp,那就是要翻转啊,翻转之后不递增不就变成不递减了吗。而前缀和和后缀和就是考考思维。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 2010;
int dp[maxn][maxn][3],num[maxn],sum1[maxn],sum2[maxn];
int Max = -1,n; int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&num[i]);
for(int i=0;i<n;i++)
sum1[i] = sum1[i-1] + (num[i] == 1);
for(int i=n-1;i>=0;i--)
sum2[i] = sum2[i+1] + (num[i] == 2);
for(int i=0;i<n;i++)
for(int j=i;j<n;j++){
dp[i][j][2] = dp[i][j-1][2] + (num[j] == 2);
dp[i][j][1] = max(dp[i][j-1][1],dp[i][j-1][2]) + (num[j] == 1);
Max = max(dp[i][j][1] + sum1[i-1] + sum2[j+1],Max);
Max = max(dp[i][j][2] + sum1[i-1] + sum2[j+1],Max);
}
printf("%d",Max);
return 0;
}

Codeforces Round #462 (Div. 2) C. A Twisty Movement的更多相关文章

  1. Codeforces Round #462 (Div. 2) C DP

    C. A Twisty Movement time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Codeforces Round #462 (Div. 2), problem: (C) A Twisty Movement (求可以转一次区间的不递增子序列元素只有1,2)

    题目意思: 给长度为n(n<=2000)的数字串,数字只能为1或者2,可以将其中一段区间[l,r]翻转,求翻转后的最长非递减子序列长度. 题解:求出1的前缀和,2的后缀和,以及区间[i,j]的最 ...

  3. 【Codeforces Round #462 (Div. 1) A】 A Twisty Movement

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] ans初值值为a[1..n]中1的个数. 接下来考虑以2为结尾的最长上升子序列的个数. 枚举中间点i. 计算1..i-1中1的个数c ...

  4. Codeforces Round #462 (Div. 2) B-A Prosperous Lot

    B. A Prosperous Lot time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #462 (Div. 2)

    这是我打的第三场cf,个人的表现还是有点不成熟.暴露出了我的一些问题. 先打开A题,大概3min看懂题意+一小会儿的思考后开始码代码.一开始想着贪心地只取两个端点的值就好了,正准备交的时候回想起上次A ...

  6. Codeforces Round #462 (Div. 2) D. A Determined Cleanup

    D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...

  7. Codeforces Round #462 (Div. 2) A Compatible Pair

    A. A Compatible Pair time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  8. 【Codeforces Round #462 (Div. 1) B】A Determined Cleanup

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设\(设f(x)=a_d*x^{d}+a_{d-1}*x^{d-1}+...+a_1*x+a_0\) 用它去除x+k 用多项式除法除 ...

  9. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

随机推荐

  1. 判断dataset表中是否存在 某列

    DataSet ds ; ds.Tables[0].Columns.Contains("a") 同样适用于 datarow dr ; dr.Table.Columns.Contai ...

  2. 网页title旁边的小图片

    网页title旁边的小图片设置,图片格式必须是.ico <link rel="icon" href="img/logo.ico" type="i ...

  3. centos yum 安装mysql5.7 以及 默认root密码查看

    1.  首先更新rpm 从MySQL Yum仓库下载最新的rpm文件:http://dev.mysql.com/downloads/repo/yum/ (需要Oracle帐号以及填写一些使用信息,才能 ...

  4. Check Point R80 Security Management

    平台: CentOS 类型: 虚拟机镜像 软件包: Security Management basic software security 服务优惠价: 按服务商许可协议 云服务器费用:查看费用 立即 ...

  5. ubuntu16.04解决屏幕适应问题

    打开ubuntu登录进去后,输入: sudo  apt-get installopen-vm-tools sudo apt-get install open-vm* 然后重启(reboot),即可解决 ...

  6. docker制作共享jdk的tomcat镜像

    FROM centos:7.4.1708 #挂载宿主机jdk到容器,节省空间 MAINTAINER huqiang:2018/10/12 ENV VERSION=8.5.34 ENV CATALINA ...

  7. 部署JavaWeb时出现 If a file is locked,you can wait until

    在部署JavaWeb程序时出现了if a file is locked ,you can wait until the lock stop的问题,这个主要是classpath目录出错或者jar包未导入 ...

  8. 如何处理SAP HANA Web-Based Development Workbench的403 Forbidden错误

    打开SAP云平台上的SAP HANA Web-Based Development Workbench超链接: 遇到错误信息:403 - Forbidden - The server refused t ...

  9. 使用Java程序消费SAP Leonardo的机器学习API

    以sap leonardo作为关键字在微信上搜索,能搜到不少文章.但是我浏览了一下,好像没有发现有从具体编程角度上来介绍的.所以我就贡献一篇. 需求 开发一个Java程序,用户可以指定一张图片,该Ja ...

  10. Redis多机数据库

    复制 PSYNC命令具有完整重同步(full resynchronization)和部分重同步(partial resynchronization)两种模式: ·其中完整重同步用于处理初次复制情况:完 ...