Cyclic Tour

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
Total Submission(s): 2399    Accepted Submission(s): 1231

Problem Description
There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?
 



Input
There are several test cases in the input. You should process to the end of file (EOF).
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
 



Output
Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1. 
 



Sample Input
6 9
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
6 5
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
 



Sample Output
42
-1

Hint

In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.

 



Author
RoBa@TJU
 



Source
 



Recommend
lcy   |   We have carefully selected several similar problems for you:  1533 3395 3315 1565 2448 
 

题意:
  给你一个 N 个顶点 M 条边的带权有向图, 要你把该图分成 1 个或多个不相交的有向环. 且所有点都只被一个有向环覆盖.

  问你该有向环所有权值的总和最小是多少?(保证有解)

解析:

  任意类似的【有向环最小权值覆盖】问题,都可以用最小费用流来写。
  由于题目中要求每个点最多走一次,为了防止走多次的发生,我们要把每个点 i 拆成左部点i和右部点i+n两个点。

具体建图如下:

  1、S向各点连<1,0>(前者表示容量,后者表示花费)
  2、各点向T连<1,0>
  3、如果i与j之间有连边,i向j+n连<1,w[i,j]>
最终如果最大流 == n 的话(即满流),那么最小费用就是我们所求,否则输出-1;

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
const int M=2e5+;
const int inf=0x3f3f3f3f;
struct edge{int v,cap,cost,next;}e[M<<];int tot=,head[N];
int n,m,cas,ans,res,S,T,dis[N],Prev[N],flow[N],q[N*];
bool vis[N];
void add(int x,int y,int z,int cost){
e[++tot].v=y;e[tot].cap=z;e[tot].cost=cost;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].cost=-cost;e[tot].next=head[y];head[y]=tot;
}
bool spfa(){
for(int i=S;i<=T;i++) vis[i]=,dis[i]=inf;
int h=,t=;q[t]=S;dis[S]=;flow[S]=inf;
while(h!=t){
int x=q[++h];vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]>dis[x]+e[i].cost){
dis[e[i].v]=dis[x]+e[i].cost;
Prev[e[i].v]=i;
flow[e[i].v]=min(flow[x],e[i].cap);
if(!vis[e[i].v]){
vis[e[i].v]=;
if(dis[e[i].v]<dis[x])
q[h--]=e[i].v;
else
q[++t]=e[i].v;
}
}
}
}
return dis[T]!=inf;
}
void augment(){
for(int i=T;i!=S;i=e[Prev[i]^].v){
e[Prev[i]].cap-=flow[T];
e[Prev[i]^].cap+=flow[T];
}
res+=flow[T];
ans+=dis[T]*flow[T];
}
void init(){
res=ans=;tot=;
memset(head,,sizeof head);
}
int main(){
while(scanf("%d%d",&n,&m)==){
init();
S=,T=n<<|;
for(int i=;i<=n;i++) add(S,i,,),add(i+n,T,,);
for(int i=,x,y,w;i<=m;i++) x=read(),y=read(),w=read(),add(x,y+n,,w);;
while(spfa()) augment();
if(res==n) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}

HDU 1853 Cyclic Tour[有向环最小权值覆盖]的更多相关文章

  1. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  2. HDU 3488 Tour(最小费用流:有向环最小权值覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意: 给出n个点和m条边,每条边有距离,把这n个点分成1个或多个环,且每个点只能在一个环中,保证有解. ...

  3. Tour HDU - 3488 有向环最小权值覆盖 费用流

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 给一个无源汇的,带有边权的有向图 让你找出一个最小的哈密顿回路 可以用KM算法写,但是费用流也行 思路 1 ...

  4. hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...

  5. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

  6. 【刷题】HDU 1853 Cyclic Tour

    Problem Description There are N cities in our country, and M one-way roads connecting them. Now Litt ...

  7. ZOJ-2342 Roads 二分图最小权值覆盖

    题意:给定N个点,M条边,M >= N-1.已知M条边都有一个权值,已知前N-1边能构成一颗N个节点生成树,现问通过修改这些边的权值使得最小生成树为前N条边的最小改动总和为多少? 分析:由于计算 ...

  8. HDU 1853 Cyclic Tour(最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others) Tota ...

  9. 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour

    题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...

随机推荐

  1. LeetCode OJ-- Sudoku Solver ***

    https://oj.leetcode.com/problems/sudoku-solver/ 九宫格数独问题. 一行上为1 2 3 到9 一列上为1 2 3 到9 每个小的3*3格子为 1 2 3 ...

  2. 用户找回密码功能JS验证邮箱通过点击下一步隐藏邮箱输入框并修改下一步按钮的ID

    //这里是BaseDao /** * 获得一个对象 * @param hql * @param param * @return */ public Object get(String hql, Obj ...

  3. Codeforces Gym101063 C.Sleep Buddies (2016 USP-ICMC)

    C.Sleep Buddies It is nighttime in the Earth Colony on Mars and everyone is getting ready to sleep. ...

  4. Codeforces 703D Mishka and Interesting sum(离线 + 树状数组)

    题目链接  Mishka and Interesting sum 题意  给定一个数列和$q$个询问,每次询问区间$[l, r]$中出现次数为偶数的所有数的异或和. 设区间$[l, r]$的异或和为$ ...

  5. php中int类型在不同平台所占不同字节数理解

    1.在不同平台上占字节数与最大值 在32位平台上int占4个字节,在64位平台上int占8个字节,PHP_INT_SIZE 在32位平台上int的最大值2^31 - 1,在64位平台上int最大值2^ ...

  6. OpenSSL使用3(基本原理及生成过程)(转)

    1. 基本原理 OpenSSL初接触的人恐怕最难的在于先理解各种概念 公钥/私钥/签名/验证签名/加密/解密/非对称加密 我们一般的加密是用一个密码加密文件,然后解密也用同样的密码.这很好理解,这个是 ...

  7. servlet与线程与jdbc connection的关系

    servlet与线程与jdbc connection的关系 都是一一绑定的关系, servlet接受那么多此请求. 一个请求,对应一个线程,对应一个DB POOL的connection. 因为conn ...

  8. novell.directory.ldap获取邮箱活动目录

    在windows系统上可以使用下列方法来查找所有的员工邮箱和员工组: StringDictionary ReturnArray = new StringDictionary(); Dictionary ...

  9. django发送邮件配置

    配置如下,settings中配置: EMAIL_HOST = 'smtp.163.com' EMAIL_PORT = '25' EMAIL_HOST_USER = 'contact108@163.co ...

  10. 查找python项目依赖并生成requirements.txt

    1.如果使用virtualenv环境,直接使用 pip freeze > requirements.txt ➜  ~ .virtualenvs/xxx/bin/pip freeze > r ...