uoj#228. 基础数据结构练习题(线段树)
只有区间加区间开方我都会……然而加在一起我就gg了……
然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖可以改成区间减去一个数),否则的话如果最小值等于最大值加一,且最小值和最大值开方之后减少的值一样,也直接打上区间减标记,否则递归下去
考虑复杂度,如果两个相邻的点导致包含这两个点的区间必须从这里分开才能进行开根操作,那么就称其为一个分界点,一个分界点相当于把区间开根分成两次。因为序列的初始值小于等于\(10^5\),最多开根\(4\)次分界点就会消失,而区间加的权值也小于等于\(10^5\),最多增加两个点\(4\)次开根,常数而已
然后试了试ljh_2000大佬说的标记永久化+不下传……跑得贼快啊……
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define ls (p<<1)
#define rs (p<<1|1)
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
inline ll max(const R ll &x,const R ll &y){return x>y?x:y;}
inline ll min(const R ll &x,const R ll &y){return x<y?x:y;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5;
struct node{int len;ll sum,tag,mn,mx;}tr[N<<2];
int n,m,a[N],ql,qr,val,op;ll ans;
inline void pd(R node &x,R ll v){x.tag+=v,x.mn+=v,x.mx+=v,x.sum+=v*x.len;}
void upd(R int p){
tr[p].sum=tr[ls].sum+tr[rs].sum+tr[p].tag*tr[p].len;
tr[p].mx=max(tr[ls].mx,tr[rs].mx)+tr[p].tag;
tr[p].mn=min(tr[ls].mn,tr[rs].mn)+tr[p].tag;
}
void build(int p,int l,int r){
tr[p].len=r-l+1;
if(l==r)return (void)(tr[p].sum=tr[p].mx=tr[p].mn=a[l]);
int mid=(l+r)>>1;
build(ls,l,mid),build(rs,mid+1,r);
upd(p);
}
void update(int p,int l,int r){
if(ql<=l&&qr>=r)return pd(tr[p],val);
int mid=(l+r)>>1;
if(ql<=mid)update(ls,l,mid);
if(qr>mid)update(rs,mid+1,r);
upd(p);
}
void Sqrt(int p,int l,int r,ll tag){
if(ql<=l&&qr>=r){
if(tr[p].mx==tr[p].mn){
ll del=tr[p].mn+tag-(ll)sqrt(tr[p].mn+tag);
return pd(tr[p],-del);
}
ll c1=sqrt(tr[p].mn+tag)+1,c2=sqrt(tr[p].mx+tag);
if(tr[p].mx==tr[p].mn+1&&c1==c2){
ll del=tr[p].mn+tag-(ll)sqrt(tr[p].mn+tag);
return pd(tr[p],-del);
}
}
int mid=(l+r)>>1;
if(ql<=mid)Sqrt(ls,l,mid,tag+tr[p].tag);
if(qr>mid)Sqrt(rs,mid+1,r,tag+tr[p].tag);
upd(p);
}
void query(int p,int l,int r,ll tag){
if(ql<=l&&qr>=r)return (void)(ans+=tr[p].sum+tr[p].len*tag);
int mid=(l+r)>>1;
if(ql<=mid)query(ls,l,mid,tag+tr[p].tag);
if(qr>mid)query(rs,mid+1,r,tag+tr[p].tag);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
fp(i,1,n)a[i]=read();
build(1,1,n);
while(m--){
op=read(),ql=read(),qr=read();
switch(op){
case 1:val=read(),update(1,1,n);break;
case 2:Sqrt(1,1,n,0);break;
case 3:ans=0;query(1,1,n,0);print(ans);break;
}
}return Ot(),0;
}
uoj#228. 基础数据结构练习题(线段树)的更多相关文章
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- uoj#228. 基础数据结构练习题(线段树区间开方)
题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...
- UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题
题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...
- 【线段树】uoj#228. 基础数据结构练习题
get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...
- 【UOJ#228】基础数据结构练习题 线段树
#228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...
- uoj#228 基础数据结构练习题
题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...
- 【uoj#228】基础数据结构练习题 线段树+均摊分析
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...
- UOJ #228 - 基础数据结构练习题(势能线段树+复杂度分析)
题面传送门 神仙题. 乍一看和经典题 花神游历各国有一点像,只不过多了一个区间加操作.不过多了这个区间加操作就无法再像花神游历各国那样暴力开根直到最小值为 \(1\) 为止的做法了,稍微感性理解一下即 ...
- [UOJ228] 基础数据结构练习题 - 线段树
考虑到一个数开根号 \(loglog\) 次后就会变成1,设某个Node的势能为 \(loglog(maxv-minv)\) ,那么一次根号操作会使得势能下降 \(1\) ,一次加操作最多增加 \(l ...
随机推荐
- clone和dup
ruby中clone和dup都是对一个对象的浅拷贝,其区别如下: 1.clone会拷贝单例方法,而dup不会. a = Object.new def a.hello "hello" ...
- 一次react滚动列表的实践---兼容ios安卓
一.背景 近期项目改版,对原有的h5页面进行了重新设计,数据呈现变成了瀑布流.希望新版兼容ios和安卓两端的情况下,无限制的刷新加载数据.大致效果如下: 整个页面分4部分: 顶部导航 步数状态卡片 用 ...
- consider increasing the maximum size of the cache.
虚拟机上搭建jenkins,出现unable to free [10] percent of the cache for Context [/jenkins] 提示让我加大缓存 consider in ...
- glViewport()函数和glOrtho()函数的理解(转)
转:http://www.cnblogs.com/yxnchinahlj/archive/2010/10/30/1865298.html 摘要:glOrtho相当指定图框的大小,由此会使得图框里的图形 ...
- HDU 4652 Dice:期望dp(成环)【错位相减】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4652 题意: 给你一个有m个面的骰子. 两种询问: (1)"0 m n": “最后 ...
- C#多线程学习 之 线程池[ThreadPool]
在多线程的程序中,经常会出现两种情况: 一种情况: 应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应 这一般使用ThreadPo ...
- python-多线程1
程序\进程\线程的关系: 程序(program) 一组功能集合的静态描述,程序至少有一个进程 进程(process) 进程是系统进行资源分配和调度的,他们拥有自己独立的空间,进程至少有一个线程 线程( ...
- Java_泛型_01_T与?
二.参考文档 1.JAVA泛型通配符T,E,K,V区别,T以及Class<T>,Class<?>的区别
- linux cpu占用100%排查
某服务器上部署了若干tomcat实例,即若干垂直切分的Java站点服务,以及若干Java微服务,突然收到运维的CPU异常告警. 问:如何定位是哪个服务进程导致CPU过载,哪个线程导致CPU过载,哪段代 ...
- codeforces 659B B. Qualifying Contest(水题+sort)
题目链接: B. Qualifying Contest time limit per test 1 second memory limit per test 256 megabytes input s ...