Description

In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?
 

Input

There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

 

Output

For each case, output a n,m mod 10000007.
 

Sample Input

1 1
1
2 2
0 0
3 7
23 47 16
 

Sample Output

234
2799
72937

Hint

这个题目由于m数据范围很大,故不能直接暴力计算。此处采用矩阵乘法,由矩阵乘法可以由每一列得到下一列。然后矩阵的乘法使用快速幂加快计算。

由2333可以由233乘10加3,于是打算构造n+2行的方阵。

大致如下:

10 0 0 0 ……0 1

10 1 0 0 ……0 1

10 1 1 0 ……0 1

……

10 1 1 1 ……1 1

0   0 0 0 ……0 1

而所要求的列矩阵大致如下:

23……3

a 1,0

a 2,0

……

a n,0

3

递推的正确性可以通过计算验证

此处矩阵通过结构体,运算符重载完成。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 10000007
#define LL long long using namespace std; struct Mat
{
LL val[15][15];
int len; Mat operator = (const Mat& a)
{
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
val[i][j] = a.val[i][j];
len = a.len;
return *this;
} Mat operator * (const Mat& a)
{
Mat x;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
for (int k = 0; k < len; ++k)
if (val[i][k] && a.val[k][j])
x.val[i][j] = (x.val[i][j] + (val[i][k]*a.val[k][j])%N)%N;
return x;
} Mat operator ^ (const int& a)
{
int n = a;
Mat x, p = *this;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
x.val[i][i] = 1;
while (n)
{
if (n & 1)
x = x * p;
p = p * p;
n >>= 1;
}
return x;
}
}; int n, m;
LL a[15], ans; void Make(Mat &p)
{
p.len = n + 2;
memset(p.val, 0, sizeof(p.val));
for (int i = 0; i <= n; ++i)
p.val[i][0] = 10;
for (int i = 0; i <= n+1; ++i)
p.val[i][n+1] = 1;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j)
p.val[i][j] = 1;
} int main()
{
//freopen("test.txt", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
{
Mat p;
Make(p);
p = p ^ m;
a[0] = 23;
a[n+1] = 3;
for (int i = 1; i <= n; ++i)
scanf("%I64d", &a[i]);
ans = 0;
for (int i = 0; i <= n+1; ++i)
ans = (ans + (p.val[n][i]*a[i])%N)%N;
printf("%I64d\n", ans);
}
return 0;
}

ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)的更多相关文章

  1. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  2. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  3. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  4. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  6. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  7. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  8. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

  9. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

随机推荐

  1. URL Handle in Swift (一) -- URL 分解

    更新时间: 2018-6-6 在程序开发过程之中, 我们总是希望模块化处理某一类相似的事情. 在 ezbuy 开发中, 我接触到了对于 URL 处理的优秀的代码, 学习.改进.记录下来.希望对你有所帮 ...

  2. HDU 4930 Fighting the Landlords(扯淡模拟题)

    Fighting the Landlords 大意: 斗地主... . 分别给出两把手牌,肯定都合法.每张牌大小顺序是Y (i.e. colored Joker) > X (i.e. Black ...

  3. caffe编译的问题 找不到opencv的 tiff库文件

    解决办法:    sudo  su cmake  .. make  -j8 make  pycaffe make  install 问题解决. 看起来是权限问题导致.

  4. 02-cookie案例-显示用户上次访问网站的时间

    package cookie; import java.io.IOException;import java.io.PrintWriter;import java.util.Date; import ...

  5. 深入Asyncio(四)Coroutines

    Coroutines asyncio在3.4版本添加到Python中,但通过async def和await关键字创建coroutines的语法是3.5才加入的,在这之前,人们把generators当作 ...

  6. C语言的运算符的优先级与结合性+ASCII表

    [0]README 0.1) 内容来源于 C程序设计语言, 旨在整理出C语言的运算符的优先级与结合性, 如下图所示(哥子 记了大半年都没有记住,也是醉了,每次都要去翻): Alert)以下内容转自:h ...

  7. 模式匹配之surf----特征点检测学习_2(surf算法)

    在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就 ...

  8. 微信小程序页面之间的跳转

    一.使用标签跳转             index.wxml:             在index.wxml页面添加一个<navigator>元素,在元素里面使用属性url就可以 二. ...

  9. .net 平台下的AI框架

    Aforge.net之旅——开篇:从识别验证码开始 基于AForge.Net框架的扑克牌识别 人工神经网络入门(4) —— AFORGE.NET简介 .NET开源工程推荐(Accord,AForge, ...

  10. 【BZOJ3435】[Wc2014]紫荆花之恋 替罪点分树+SBT

    [BZOJ3435][Wc2014]紫荆花之恋 Description 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从 ...