Description

In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?
 

Input

There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

 

Output

For each case, output a n,m mod 10000007.
 

Sample Input

1 1
1
2 2
0 0
3 7
23 47 16
 

Sample Output

234
2799
72937

Hint

这个题目由于m数据范围很大,故不能直接暴力计算。此处采用矩阵乘法,由矩阵乘法可以由每一列得到下一列。然后矩阵的乘法使用快速幂加快计算。

由2333可以由233乘10加3,于是打算构造n+2行的方阵。

大致如下:

10 0 0 0 ……0 1

10 1 0 0 ……0 1

10 1 1 0 ……0 1

……

10 1 1 1 ……1 1

0   0 0 0 ……0 1

而所要求的列矩阵大致如下:

23……3

a 1,0

a 2,0

……

a n,0

3

递推的正确性可以通过计算验证

此处矩阵通过结构体,运算符重载完成。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 10000007
#define LL long long using namespace std; struct Mat
{
LL val[15][15];
int len; Mat operator = (const Mat& a)
{
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
val[i][j] = a.val[i][j];
len = a.len;
return *this;
} Mat operator * (const Mat& a)
{
Mat x;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
for (int k = 0; k < len; ++k)
if (val[i][k] && a.val[k][j])
x.val[i][j] = (x.val[i][j] + (val[i][k]*a.val[k][j])%N)%N;
return x;
} Mat operator ^ (const int& a)
{
int n = a;
Mat x, p = *this;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
x.val[i][i] = 1;
while (n)
{
if (n & 1)
x = x * p;
p = p * p;
n >>= 1;
}
return x;
}
}; int n, m;
LL a[15], ans; void Make(Mat &p)
{
p.len = n + 2;
memset(p.val, 0, sizeof(p.val));
for (int i = 0; i <= n; ++i)
p.val[i][0] = 10;
for (int i = 0; i <= n+1; ++i)
p.val[i][n+1] = 1;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j)
p.val[i][j] = 1;
} int main()
{
//freopen("test.txt", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
{
Mat p;
Make(p);
p = p ^ m;
a[0] = 23;
a[n+1] = 3;
for (int i = 1; i <= n; ++i)
scanf("%I64d", &a[i]);
ans = 0;
for (int i = 0; i <= n+1; ++i)
ans = (ans + (p.val[n][i]*a[i])%N)%N;
printf("%I64d\n", ans);
}
return 0;
}

ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)的更多相关文章

  1. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  2. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  3. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  4. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  6. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  7. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  8. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

  9. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

随机推荐

  1. NHibernate3剖析:Mapping篇之ConfORM实战(1):概览

    ORuM思想浮出 对于ORM(Object Relational Mapping)我们太熟悉了,可是我们从还有一个角度能够想象出ORuM(Object Relational un-Mapping)的思 ...

  2. Java源代码之LinkedHashMap

    Java源代码之LinkedHashMap 转载请注明出处:http://blog.csdn.net/itismelzp/article/details/50554412 一.LinkedHashMa ...

  3. Centos内核版本升级

  4. WEB消息推送-comet4j

    一.comet简介: comet :基于 HTTP长连接的“服务器推”技术,是一种新的 Web 应用架构.基于这种架构开发的应用中,服务器端会主动以异步的方式向客户端程序推送数据,而不需要客户端显式的 ...

  5. iOS对象(字典或数组)转化为JSon字符串

    NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] init]; [dictionary setValue:@"he ...

  6. jquery在网页实时显示时间;

    1.定义一个显示时间的位置 <div id="shijian"> </div> 2.jquery代码 function showTime() { var c ...

  7. .net 平台下的AI框架

    Aforge.net之旅——开篇:从识别验证码开始 基于AForge.Net框架的扑克牌识别 人工神经网络入门(4) —— AFORGE.NET简介 .NET开源工程推荐(Accord,AForge, ...

  8. C#根据Type获取默认值

    简单的获取某变量类型的默认值 在c#中为我们提供了default(),但是default的参数是具体的类名, 如何根据变量类型的Type获取默认值Code如下: 1 public static obj ...

  9. JavaEE详解

    本文主要讲JavaEE相关知识. 一 JavaEE 简介 JavaEE是很多技术的合集.提供了一套做B/S结构应用时,可能遇到问题的一套解决方案. 例如:处理客服端请求的servlet技术方案.处理数 ...

  10. crm高速开发之EntityCollection

    /* 创建者:菜刀居士的博客  * 创建日期:2014年07月07号  */ namespace Net.CRM.OrganizationService {     using System;     ...