5.4 heapq--堆队列算法
本模块实现了堆队列算法,也叫作优先级队列算法。堆队列是一棵二叉树。而且拥有这样特点,它的父节点的值小于等于不论什么它的子节点的值,假设採用数组array实现,能够把它们的关系表示为:heap[k] <= heap[2*k+1] 和 heap[k] <= heap[2*k+2]。对于全部k值都成立,k值从0開始计算。作为比較,能够觉得不存的元素是无穷大的。堆队列有一个比較重要的特性。它的最小值的元素就是在根:heap[0]。
以下的API与教科书上堆算法有两点区别:(a)使用0開始的索引。
这样可能会让大家看到节点层次的索引上有点别扭的,但这样更适合python语言处理,由于python是以0为開始计算数组和列表的索引。(b)弹出的方法返回的值是最小值,而不是最大值(在教科书上叫作最小堆,最大堆在教科书更通用地使用来教学。由于它更适合排序算法)。
基于上面两点能够查看一个堆:heap[0]返回一个最小值的项,heap.sort()对整个堆进行排序。
创建一个堆队列,能够使用一个列表[],也能够使用heapify(x)函数。
heapq.heappush(heap, item)
把一项值压入堆heap,同一时候维持堆的排序要求。
样例:
#python 3.4
import heapq
h = []
heapq.heappush(h, 5)
heapq.heappush(h, 2)
heapq.heappush(h, 8)
heapq.heappush(h, 4)
print(heapq.heappop(h))
结果输出例如以下:
2
heapq.heappop(heap)
弹出并返回堆里最小值的项。调整堆排序。
假设堆为空,抛出异常IndexError。
样例:
#python 3.4
import heapq
h = []
heapq.heappush(h, 5)
heapq.heappush(h, 2)
heapq.heappush(h, 8)
heapq.heappush(h, 4)
print(heapq.heappop(h))
print(heapq.heappop(h))
结果输出例如以下:
2
4
heapq.heappushpop(heap, item)
向堆里插入一项。并返回最小值的项。
组合了前面两个函数。这样更加有效率。
样例:
#python 3.4
import heapq
h = []
heapq.heappush(h, 5)
heapq.heappush(h, 2)
heapq.heappush(h, 8)
print(heapq.heappushpop(h, 4))
结果输出例如以下:
2
heapq.heapify(x)
就地转换一个列表为堆排序。时间为线性。
样例:
#python 3.4
import heapq
h = [9, 8, 7, 6, 2, 4, 5]
heapq.heapify(h)
print(h)
结果输出例如以下:
[2, 6, 4, 9, 8, 7, 5]
heapq.heapreplace(heap, item)
弹出最小值的项。并返回对应的值,最后把新项压入堆。假设堆为空抛出异常IndexError。
样例:
#python 3.4
import heapq
h = [9, 8, 7, 6, 2, 4, 5]
heapq.heapify(h)
print(h)
print(heapq.heapreplace(h, 1))
print(h)
结果输出例如以下:
[2, 6, 4, 9, 8, 7, 5]
2
[1, 6, 4, 9, 8, 7, 5]
heapq.merge(*iterables)
合并多个堆排序后的列表,返回一个迭代器訪问全部值。
样例:
#python 3.4
import heapq
h = [9, 8, 7, 6, 2, 4, 5]
heapq.heapify(h)
l = [19, 11, 3, 15, 16]
heapq.heapify(l)
for i in heapq.merge(h,l):
print(i, end = ',')
结果输出例如以下:
2,3,6,4,9,8,7,5,11,19,15,16,
heapq.nlargest(n, iterable, key=None)
从数据集iterable里获取n项最大值,以列表方式返回。假设參数 key提供,key是一个比較函数。用来比較元素之间的值。
样例:
#python 3.4
import heapq
h = [9, 1, 7, 6, 2, 4, 5]
l = heapq.nlargest(3, h)
print(l)
结果输出例如以下:
[9, 7, 6]
heapq.nsmallest(n, iterable, key=None)
从数据集iterable里获取n项最小值,以列表方式返回。假设參数 key提供,key是一个比較函数,用来比較元素之间的值。相当于:sorted(iterable, key=key)[:n]
样例:
#python 3.4
import heapq
h = [9, 1, 7, 6, 2, 4, 5]
l = heapq.nsmallest(3, h)
print(l)
结果输出例如以下:
[1, 2, 4]
在最后这两个函数中,假设数量比較少时使用起来比較高效,假设数据量比較大,要使用sorted()函数。假设n=1最好使用内置函数min()或max()。
採用堆算法来实现排序:
样例:
#python 3.4
import heapq
def heapsort(iterable):
'实现与sorted(iterable)同样的功能'
h = []
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
print(heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0]))
结果输出例如以下:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
蔡军生 QQ:9073204 深圳
5.4 heapq--堆队列算法的更多相关文章
- 『Python CoolBook:heapq』数据结构和算法_heapq堆队列算法&容器排序
一.heapq堆队列算法模块 本模块实现了堆队列算法,也叫作优先级队列算法.堆队列是一棵二叉树,并且拥有这样特点,它的父节点的值小于等于任何它的子节点的值. 本模块实际上实现了一系列操作容器的方法,使 ...
- 从一个集合中查找最大最小的N个元素——Python heapq 堆数据结构
Top N问题在搜索引擎.推荐系统领域应用很广, 如果用我们较为常见的语言,如C.C++.Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个 ...
- 双有序队列算法——处理哈夫曼K叉树的高效算法
算法介绍: 哈夫曼树的思路及实现众所周知,大部分是用堆来维护和实现,这种思路比较清晰,在K比较小的时候处理较快(具体例子接下来再说),而且编程复杂度不是很高,利于应用.但是,其所用的数据结构是树,是在 ...
- Python标准库模块之heapq – 堆构造
Python标准库模块之heapq – 堆构造 读前福利:几百本经典书籍https://www.johngo689.com/2158/ 原文链接:https://www.johngo689.com/2 ...
- php队列算法[转]
<?php/*** php队列算法* * Create On 2010-6-4* Author Been* QQ:281443751* Email:binbin1129@126.com**/cl ...
- JS里的居民们4-数组((堆)队列
编码1(队头在最右) 练习如何使用数组来实现队列,综合考虑使用数组的 push,pop,shift,unshift操作 基于代码,实现如按钮中描述的功能: 实现如阅读材料中,队列的相关入队.出队.获取 ...
- 【STL学习】堆相关算法详解与C++编程实现(Heap)
转自:https://blog.csdn.net/xiajun07061225/article/details/8553808 堆简介 堆并不是STL的组件,但是经常充当着底层实现结构.比如优先级 ...
- python 之 heapq (堆)
堆的实现通过构造二叉堆,实为二叉树的一种:这种数据结构具有以下性质: 任意节点小于(或大于)它的后裔,最小元(或最大元)在堆的根上 堆总是一颗完整树.即除了最低层,其它层的节点都被元素填满,且最低层极 ...
- python中heapq堆的讲解
堆的定义: 堆是一种特殊的数据结构,它的通常的表示是它的根结点的值最大或者是最小. python中heapq的使用 列出一些常见的用法: heap = []#建立一个常见的堆 heappush(hea ...
随机推荐
- Selenium WebDriver- 操作JavaScript的prompt弹窗(使用率低)
#encoding=utf-8 import unittest import time from selenium import webdriver from selenium.webdriver i ...
- 如何解决border的重叠问题
我现在在做一个ul列表,然后给每个li加上边框,但是加完了之后,相邻列表的边框就会变成2px,比如第一个li的下边框和第二个li的上边框就会重叠在一起,请问这有什么办法解决一下么? 解决方法是: 试试 ...
- oracle中的dual表
dual表是和Oracle数据字典一起创建的.它实际上只包含dummy这一个column,并且只有一条记录,这条记录的值是X. X dual表的owner是SYS,但所有用户都可以访问它.Althou ...
- POJ 2021 Relative Relatives
Relative Relatives Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3339 Accepted: 146 ...
- Bootstrap-table custome-ajax用法
<div id="toolbar"> <div class="form-inline" role="form"> & ...
- How to use MJRefresh
Installation with CocoaPods:pod 'MJRefresh' Manual import: Drag All files in the MJRefresh folder to ...
- C++之Effective STL学习笔记Item14
使用reserve来避免不必要的重新分配! The reserve member function allows you to minimize the number ofreallocations ...
- Swagger Edit自动生成代码工具
一.swagger简介 swagger是一套开源的API设计工具,包括Swagger UI和Swagger Editor等.其中swagger edit是用来编辑接口文档的小程序,非常简单易用.在官网 ...
- Java面试题之有没有有顺序的Map实现类,如果有,他们是怎么实现有序的?
Hashmap和Hashtable 都不是有序的. TreeMap和LinkedHashmap都是有序的.(TreeMap默认是key升序,LinkedHashmap默认是数据插入顺序) TreeMa ...
- PHP分页类(较完美)
<?php /** file: page.class.php 完美分页类 Page */ class Page { private $total; //数据表中总记录数 private $lis ...