原文:算法起步之Kruskal算法

说完并查集我们接着再来看这个算法,趁热打铁嘛。什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是图上的每个节点,节点之间有很多的路径,而铺自来水管道目的就是为了让每家都能用上自来水,而至于自来水怎么铺就不关心了,而铺管子的人就会想如何才能最生材料,那么最省材料的一条路径就是我们这个图的最小生成树。而如何去构建一个最小生成树呢?这个就用到了我们之前说的贪心策略。这里的觉得点就是一直寻找安全边,所以构建最小生成树的过程可以描述成,循环一直寻找安全边加入到树中,直到树中包含所有节点,什么是安全边?安全边的定义就是假设集合A是我们的最小生成树的子集,每一步都是选择一条边是的A还是最小生成树的子集则那条边就是安全边。

根据安全边选择策略不同有两种最短路径算法,分别是Kruskal算法跟prim算法。我们先来说Kruskal算法。首先我们先看一下图,我觉得图比说要好理解的多。

大家可能已经看出来了,kruskal算法寻找安全边的方式,就是在所有的边中找最小的表,只要两个节点是两个不相交集合,就加入到最小生成树中,直到所有的节点都连接起来。我用汉字写一下伪代码:

1循环所有的边;2构建一个最小优先队列;3构建一个并查集;4直到构建成最小生成树{  从优先队列取出一个值,判断两个节点是不是不相交集合,是否加入到最小树中。  }结束

下面我们就安装伪代码来写。可能相比之前的代码要多一点,但是基本思想都一样,代码多是因为要写一个javabean跟实现一个并查集,并查集我们在上一篇已经讲过http://blog.csdn.net/idlear/article/details/19556587,最小优先队列也已经说过http://blog.csdn.net/idlear/article/details/18997685大家可以参考之前的文章。

这个是边的javabean不需要解释了吧。

class Bian implements Comparable<Bian>{
private int left;
private int right;
private int value;
public Bian(int i, int j, int k) {
this.left=i;
this.right=j;
this.value=k;
}
public int getLeft() {
return left;
}
public void setLeft(int left) {
this.left = left;
}
public int getRight() {
return right;
}
public void setRight(int right) {
this.right = right;
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
@Override
public int compareTo(Bian o) {
if (this.getValue()>o.getValue()) {
return -1;
}
return 1;
}
}

并查集。

class Ufs{
private int[] father;
private int[] rank; public void makeset(int max) {
father = new int[max];
rank = new int[max];
for (int i = 0; i < father.length; i++) {
father[i] = i;
}
} public void union(int x, int y) {
if (rank[x] > rank[y]) {
father[y] = x;
} else {
if (rank[x] == rank[y]) {
rank[y]++;
}
father[x] = y;
}
} public int findset(int x) {
if (father[x] != x) {
father[x] = findset(father[x]);
}
return father[x];
}
}

核心代码其实就是一个循环过程,而之前的代码也全是在先前的准备工作。这里如果有几个类没有见过都是java中的工具类,这些类的作用可以查一下api文档。

public void kruskal(int[][] map) {

		Ufs ufs=new Ufs();
ufs.makeset(map.length);
ArrayList list=new ArrayList();
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map.length; j++) {
if(map[i][j]!=0){
Bian b=new Bian(i,j,map[i][j]);
list.add(b);
}
}
}
int max=0;
while(max<=map.length-1){
Collections.sort(list);
Bian b=(Bian) list.remove(1);
int x=b.getLeft();
int y=b.getRight();
if(ufs.findset(x)!=ufs.findset(y)){
ufs.union(x, y);
System.out.println("连接"+x+","+y+"路径长度为"+b.getValue());
max++;
}
}
}

友情提示:转载请注明出处【作者idlear    博客http://blog.csdn.net/idlear/article/details/19301373】

算法起步之Kruskal算法的更多相关文章

  1. 算法起步之Prim算法

    原文:算法起步之Prim算法 prim算法是另一种最小生成树算法.他的安全边选择策略跟kruskal略微不同,这点我们可以通过一张图先来了解一下. prim算法的安全边是从与当前生成树相连接的边中选择 ...

  2. 算法起步之Bellman-Ford算法

    原文:算法起步之Bellman-Ford算法 从这篇开始我们开始介绍单源最短路径算法,他是图算法之一,我们前面说的贪心,图的遍历,动态规划都是他的基础,单源最短路径其实说的就是图中节点到节点的最短路径 ...

  3. 算法起步之Dijkstra算法

    原文:算法起步之Dijkstra算法 友情提示:转载请注明出处[作者 idlear    博客:http://blog.csdn.net/idlear/article/details/19687579 ...

  4. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  5. 算法8-4:Kruskal算法

    Kruskal算法用于计算一个图的最小生成树.这个算法的过程例如以下: 依照边的权重从小到达进行排序 依次将每条边添加到最小生成树中,除非这条边会造成回路 实现思路 第一个步骤须要对边进行排序,排序方 ...

  6. 算法笔记_066:Kruskal算法详解(Java)

    目录 1 问题描述 2 解决方案 2.1 构造最小生成树示例 2.2 伪码及时间效率分析 2.3 具体编码(最佳时间效率)   1 问题描述 何为Kruskal算法? 该算法功能:求取加权连通图的最小 ...

  7. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  8. [数据结构]最小生成树算法Prim和Kruskal算法

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  9. 无向带权图的最小生成树算法——Prim及Kruskal算法思路

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

随机推荐

  1. cocos2d-x2.0 win7第一次创建项目需要调用到的脚本(不断更新维护)//cocos2d-x 教程一

    第一步: 最新的cocos2d-x.下载地址https://github.com/cocos2d/cocos2d-x github上最新的引擎,值得注意的是官网上发布的引擎是稳定版.选择哪种就看个人喜 ...

  2. StreamWrite-StreamRead 读写文本文件

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  3. NET Core R2跑Hello World

    在CentOS 7上安装.NET Core R2跑Hello World 前言 在上个月.NET Core出了最新版本预览版,只是在Window系统上试验了一下.原本想等发布正式版的时候在linux系 ...

  4. on、where、having的区别(转载)

    on.where.having的区别 on.where.having这三个都可以加条件的子句中,on是最先执行,where次之,having最后.有时候如果这先后顺序不影响中间结果的话,那最终结果是相 ...

  5. java基础之&amp; 和 &amp;&amp; 的差别

    &和&&都能够用作逻辑与的运算符,表示逻辑与(and),当运算符两边的表达式的结果都为true时,整个运算结果才为true,否则,仅仅要有一方为false,则结果为false. ...

  6. C#、WinForm、ASP.NET - SQLHelper.cs

    SQLHelper.cs using System; using System.Data; using System.Configuration; using System.Data.SqlClien ...

  7. XML文件解析之--DOM与SAX

    xml文件又称‘可扩展性标记语言’,可以对文档和数据进行结构化处理,从而能够在部门.客户和供应商之间进行交换,实现动态内容生成,企业集成和应用开发. 我们在进行web开发的时候离不开xml文件,xml ...

  8. 14.10.4 Defragmenting a Table 整理表

    14.10.4 Defragmenting a Table 整理表: 随机插入或者删除从一个secondary index 可以导致index变的fragmented Fragmentation意味着 ...

  9. Java面试宝典2014版

    一. Java基础部分......................................................................................... ...

  10. python发送post和get请求

    python发送post和get请求 get请求: 使用get方式时,请求数据直接放在url中. 方法一. import urllib import urllib2 url = "http: ...