Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9614   Accepted: 5548

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source

挺有意思的一道DP,给你一片空地的长和宽,让你用1 * 2的长方形填充空地,使之填满,问有多少种不同的方案。
我是按照Discuss里的一位大神的思路写的,Orz。。。
用2进制的01表示不放还是放
第i行只和i-1行有关
枚举i-1行的每个状态,推出由此状态能达到的i行状态
如果i-1行的出发状态某处未放,必然要在i行放一个竖的方块,所以我对上一行状态按位取反之后的状态就是放置了竖方块的状态。
然后用搜索扫一道在i行放横着的方块的所有可能,并且把这些状态累加上i-1的出发状态的方法数,如果该方法数为0,直接continue。
举个例子
2 4
1111
1111
状态可以由
1100 0000 0110 0011 1111
0000 0000 0000 0000 0000
这五种i-1的状态达到,故2 4 的答案为5

代码如下:PS:这里科普一下运算符的优先级 http://blog.csdn.net/acm_xmzhou/article/details/9804983

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set> using namespace std;
//#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a)) #define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 100 + 50;
const int maxw = 100 + 20;
const int MAXNNODE = 1000000 +10;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
#define eps 1e-8
#define mod 1000000007
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pi;
LL dp[30][1 << 12], i , j , m , n , key = 1;///d[i][j]中i为该状态行数,j为二进制表示的该行状态,1为有木块,0为没有
///d[i][j]的值为该状态下的方法数
void solve(int i , int s , int pos)
{
if(pos == m)///最后一列累加前i行的方法数
{
dp[i][s] += key;
return ;
}
solve(i , s , pos + 1);///不放木块等待下一行竖放
if(pos <= m - 2&&!(s&1 << pos)&&!(s&1 <<(pos + 1)))///可以横放:<= m - 2&&第pos位和第pos + 1位为0(无木块)
solve(i , s|1 << pos|1 << pos + 1 , pos + 2);///把pos和pos+ 1为改为1,然后继续从pos + 2位solve }
int main()
{
//ios::sync_with_stdio(false);
#ifdef Online_Judge
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif // Online_Judge
while(scanf("%d%d",&n, &m),(m||n))
{
clr(dp , 0);
key = 1;
solve(1 , 0 , 0);///先求出第一行的状态
FORR(i , 2 , n)for(int j = 0 ; j < 1 << m ; j++)
{
if(dp[i - 1][j])key = dp[i - 1][j];
else continue;///i - 1行没放木块
solve(i , ~j&((1 << m) - 1) , 0);///只给j位取了反
}
printf("%lld\n",dp[n][(1 << m) - 1]);///终状态的方法数
}
return 0;
}

还有一位大神用的插头DP,看不懂就不解释了。。。
代码如下:
#include<iostream>
#include<cstring>
using namespace std;
long long f[2][1<<12],i,j,ps,p=0,c=1,n,m;
int main()
{
while (scanf("%d%d",&n,&m),n!=0)
{
memset(f[c],0,sizeof(f[c]));
f[c][(1<<m)-1]=1;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
{
swap(p,c);memset(f[c],0,sizeof(f[c]));
for (ps=0;ps<1<<m;ps++)
if (f[p][ps])
{
if (j>0&&(!(ps&(1<<j-1)))&&(ps&(1<<j))) f[c][ps|1<<(j-1)]+=f[p][ps];
if (!(ps&1<<j)) f[c][ps|1<<j]+=f[p][ps];
if (ps&1<<j) f[c][ps^1<<j]+=f[p][ps];
}
}
printf("%lld\n",f[c][(1<<m)-1]);
}
}

POJ 2411的更多相关文章

  1. 状压DP POJ 2411 Mondriaan'sDream

    题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...

  2. poj 2411 Mondriaan&#39;s Dream 【dp】

    题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...

  3. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  4. Mondriaan's Dream POJ - 2411

    Mondriaan's Dream POJ - 2411 可以用状压dp,但是要打一下表.暴力枚举行.这一行的状态.上一行的状态,判断如果上一行的状态能转移到这一行的状态就转移. 状态定义:ans[i ...

  5. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  6. poj 2411 Mondriaan's Dream 轮廓线dp

    题目链接: http://poj.org/problem?id=2411 题目意思: 给一个n*m的矩形区域,将1*2和2*1的小矩形填满方格,问一共有多少种填法. 解题思路: 用轮廓线可以过. 对每 ...

  7. POJ 2411 Mondriaan&#39;s Dream (dp + 减少国家)

    链接:http://poj.org/problem?id=2411 题意:题目描写叙述:用1*2 的矩形通过组合拼成大矩形.求拼成指定的大矩形有几种拼法. 參考博客:http://blog.csdn. ...

  8. POJ 2411 Mondriaan's Dream/[二进制状压DP]

    题目链接[http://poj.org/problem?id=2411] 题意:给出一个h*w的矩形1<=h,w<=11.用1*2和2*1的小矩形去填满这个h*w的矩形,问有多少种方法? ...

  9. POJ 2411 Mondriaan's Dream:网格密铺类 状压dp

    题目链接:http://poj.org/problem?id=2411 题意: 给你一个n*m的网格 (1<=n,m<=11) ,往里面铺1*2或2*1的砖块,问你铺完这个网格有多少种不同 ...

  10. POJ 2411 解题报告

    传送门:http://poj.org/problem?id=2411 题目简述 有一个\(W\)行\(H\)列的广场,需要用\(1*2\)小砖铺满,小砖之间互相不能重叠,问 有多少种不同的铺法? 输入 ...

随机推荐

  1. Salt Stack 官方文档翻译 - 一个想做dba的sa - 博客频道 - CSDN.NET

    OSNIT_百度百科 Salt Stack 官方文档翻译 - 一个想做dba的sa - 博客频道 - CSDN.NET Salt Stack 官方文档翻译 分类: 自动运维 2013-04-02 11 ...

  2. 数学之路-python计算实战(2)-初遇pypy

    PyPy是Python开发人员为了更好的Hack Python创建的项目.此外,PyPy比CPython是更加灵活,易于使用和试验,以制定详细的功能在不同情况的实现方法,能够非常easy实施. 该项目 ...

  3. Delphi代码中嵌入ASM代码(简单明了)

    前言 Delphi作为一个快速高效的开发平台,使用的人越来越多,但熟悉在Delphi代码中嵌入ASM代码的程序员我想不多,因为这方面的资料太少了,另一方面,它还需要有基本的汇编语言知识,关於汇编语言的 ...

  4. QSqlDatabase::addDatabase第一次运行的时候,生成SQLite文件的同时会产生一个默认连接

    QSqlDatabase::addDatabase第一次运行的时候,生成SQLite文件的同时会产生一个默认连接: QSqlDatabase database = QSqlDatabase::addD ...

  5. Next-Key Locks

    Next-Key Locks 一个next-key lock 是 一个record lock 在index record 和 一个区间锁 在一个区间在index record之前 InnoDB 执行 ...

  6. POJ 2991 Crane(线段树+计算几何)

    POJ 2991 Crane 题目链接 题意:给定一个垂直的挖掘机臂.有n段,如今每次操作能够旋转一个位置,把[s, s + 1]专程a度,每次旋转后要输出第n个位置的坐标 思路:线段树.把每一段当成 ...

  7. WCF 项目应用连载[8] - 绑定、服务、行为 大数据传输与限流 - 下 (ServiceThrottlingAttribute)

    因为ORM的原因,对Attribute编程有一种情节..所以这节的出现,完全是因为在WCF对自定义Attribute的一种应用. WCF 项目应用连载[7] - 绑定.服务.行为 大数据传输与限流 - ...

  8. ubuntu12 环境下编译freerdp

    有时候需要从linux环境下远程连接到windows的环境,可以采用freerdp.freerdp是一个linux下开源的工具,在Ubuntu下可以直接用 apt-get install freerd ...

  9. A Game of Thrones(19) - Jon

    The courtyard rang to the song of swords. Under black wool, boiled leather, and mail, sweat trickled ...

  10. python中逐行读取文件的最佳方式_Drupal_新浪博客

    python中逐行读取文件的最佳方式_Drupal_新浪博客 python中逐行读取文件的最佳方式    (2010-08-18 15:59:28)    转载▼    标签:    python   ...