理解Twisted与非阻塞编程
先来看一段代码:
# ~*~ Twisted - A Python tale ~*~
from time import sleep
# Hello, I'm a developer and I mainly setup Wordpress.
def install_wordpress(customer):
# Our hosting company Threads Ltd. is bad. I start installation and...
print "Start installation for", customer
# ...then wait till the installation finishes successfully. It is
# boring and I'm spending most of my time waiting while consuming
# resources (memory and some CPU cycles). It's because the process
# is *blocking*.
sleep(3)
print "All done for", customer
# I do this all day long for our customers
def developer_day(customers):
for customer in customers:
install_wordpress(customer)
developer_day(["Bill", "Elon", "Steve", "Mark"])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
运行一下,结果如下所示:
$ ./deferreds.py 1
------ Running example 1 ------
Start installation for Bill
All done for Bill
Start installation
...
* Elapsed time: 12.03 seconds
- 1
- 2
- 3
- 4
- 5
- 6
- 7
这是一段顺序执行的代码。四个消费者,为一个人安装需要3秒的时间,那么四个人就是12秒。这样处理不是很令人满意,所以看一下第二个使用了线程的例子:
import threading
# The company grew. We now have many customers and I can't handle the
# workload. We are now 5 developers doing exactly the same thing.
def developers_day(customers):
# But we now have to synchronize... a.k.a. bureaucracy
lock = threading.Lock()
#
def dev_day(id):
print "Goodmorning from developer", id
# Yuck - I hate locks...
lock.acquire()
while customers:
customer = customers.pop(0)
lock.release()
# My Python is less readable
install_wordpress(customer)
lock.acquire()
lock.release()
print "Bye from developer", id
# We go to work in the morning
devs = [threading.Thread(target=dev_day, args=(i,)) for i in range(5)]
[dev.start() for dev in devs]
# We leave for the evening
[dev.join() for dev in devs]
# We now get more done in the same time but our dev process got more
# complex. As we grew we spend more time managing queues than doing dev
# work. We even had occasional deadlocks when processes got extremely
# complex. The fact is that we are still mostly pressing buttons and
# waiting but now we also spend some time in meetings.
developers_day(["Customer %d" % i for i in xrange(15)])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
运行一下:
$ ./deferreds.py 2
------ Running example 2 ------
Goodmorning from developer 0Goodmorning from developer
1Start installation forGoodmorning from developer 2
Goodmorning from developer 3Customer 0
...
from developerCustomer 13 3Bye from developer 2
* Elapsed time: 9.02 seconds
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
这次是一段并行执行的代码,使用了5个工作线程。15个消费者每个花费3s意味着总共45s的时间,不过用了5个线程并行执行总共只花费了9s的时间。这段代码有点复杂,很大一部分代码是用于管理并发,而不是专注于算法或者业务逻辑。另外,程序的输出结果看起来也很混杂,可读性也天津市。即使是简单的多线程的代码同样也难以写得很好,所以我们转为使用Twisted:
# For years we thought this was all there was... We kept hiring more
# developers, more managers and buying servers. We were trying harder
# optimising processes and fire-fighting while getting mediocre
# performance in return. Till luckily one day our hosting
# company decided to increase their fees and we decided to
# switch to Twisted Ltd.!
from twisted.internet import reactor
from twisted.internet import defer
from twisted.internet import task
# Twisted has a slightly different approach
def schedule_install(customer):
# They are calling us back when a Wordpress installation completes.
# They connected the caller recognition system with our CRM and
# we know exactly what a call is about and what has to be done next.
#
# We now design processes of what has to happen on certain events.
def schedule_install_wordpress():
def on_done():
print "Callback: Finished installation for", customer
print "Scheduling: Installation for", customer
return task.deferLater(reactor, 3, on_done)
#
def all_done(_):
print "All done for", customer
#
# For each customer, we schedule these processes on the CRM
# and that
# is all our chief-Twisted developer has to do
d = schedule_install_wordpress()
d.addCallback(all_done)
#
return d
# Yes, we don't need many developers anymore or any synchronization.
# ~~ Super-powered Twisted developer ~~
def twisted_developer_day(customers):
print "Goodmorning from Twisted developer"
#
# Here's what has to be done today
work = [schedule_install(customer) for customer in customers]
# Turn off the lights when done
join = defer.DeferredList(work)
join.addCallback(lambda _: reactor.stop())
#
print "Bye from Twisted developer!"
# Even his day is particularly short!
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
# Reactor, our secretary uses the CRM and follows-up on events!
reactor.run()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
运行结果:
------ Running example 3 ------
Goodmorning from Twisted developer
Scheduling: Installation for Customer 0
....
Scheduling: Installation for Customer 14
Bye from Twisted developer!
Callback: Finished installation for Customer 0
All done for Customer 0
Callback: Finished installation for Customer 1
All done for Customer 1
...
All done for Customer 14
* Elapsed time: 3.18 seconds
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
这次我们得到了完美的执行代码和可读性强的输出结果,并且没有使用线程。我们并行地处理了15个消费者,也就是说,本来需要45s的执行时间在3s之内就已经完成。这个窍门就是我们把所有的阻塞的对sleep()的调用都换成了Twisted中对等的task.deferLater()和回调函数。由于现在处理的操作在其他地方进行,我们就可以毫不费力地同时服务于15个消费者。
前面提到处理的操作发生在其他的某个地方。现在来解释一下,算术运算仍然发生在CPU内,但是现在的CPU处理速度相比磁盘和网络操作来说非常快。所以给CPU提供数据或者从CPU向内存或另一个CPU发送数据花费了大多数时间。我们使用了非阻塞的操作节省了这方面的时间,例如,
task.deferLater()使用了回调函数,当数据已经传输完成的时候会被激活。
另一个很重要的一点是输出中的Goodmorning from Twisted developer和Bye from Twisted developer!信息。在代码开始执行时就已经打印出了这两条信息。如果代码如此早地执行到了这个地方,那么我们的应用真正开始运行是在什么时候呢?答案是,对于一个Twisted应用(包括Scrapy)来说是在reactor.run()里运行的。在调用这个方法之前,必须把应用中可能用到的每个Deferred链准备就绪,然后reactor.run()方法会监视并激活回调函数。
注意,reactor的主要一条规则就是,你可以执行任何操作,只要它足够快并且是非阻塞的。
现在好了,代码中没有那么用于管理多线程的部分了,不过这些回调函数看起来还是有些杂乱。可以修改成这样:
# Twisted gave us utilities that make our code way more readable!
@defer.inlineCallbacks
def inline_install(customer):
print "Scheduling: Installation for", customer
yield task.deferLater(reactor, 3, lambda: None)
print "Callback: Finished installation for", customer
print "All done for", customer
def twisted_developer_day(customers):
... same as previously but using inline_install() instead of schedule_install()
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
reactor.run()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
运行的结果和前一个例子相同。这段代码的作用和上一个例子是一样的,但是看起来更加简洁明了。inlineCallbacks生成器可以使用一些一些Python的机制来使得inline_install()函数暂停或者恢复执行。inline_install()函数变成了一个Deferred对象并且并行地为每个消费者运行。每次yield的时候,运行就会中止在当前的inline_install()实例上,直到yield的Deferred对象完成后再恢复运行。
现在唯一的问题是,如果我们不止有15个消费者,而是有,比如10000个消费者时又该怎样?这段代码会同时开始10000个同时执行的序列(比如HTTP请求、数据库的写操作等等)。这样做可能没什么问题,但也可能会产生各种失败。在有巨大并发请求的应用中,例如Scrapy,我们经常需要把并发的数量限制到一个可以接受的程度上。在下面的一个例子中,我们使用task.Cooperator()来完成这样的功能。Scrapy在它的Item Pipeline中也使用了相同的机制来限制并发的数目(即CONCURRENT_ITEMS设置):
@defer.inlineCallbacks
def inline_install(customer):
... same as above
# The new "problem" is that we have to manage all this concurrency to
# avoid causing problems to others, but this is a nice problem to have.
def twisted_developer_day(customers):
print "Goodmorning from Twisted developer"
work = (inline_install(customer) for customer in customers)
#
# We use the Cooperator mechanism to make the secretary not
# service more than 5 customers simultaneously.
coop = task.Cooperator()
join = defer.DeferredList([coop.coiterate(work) for i in xrange(5)])
#
join.addCallback(lambda _: reactor.stop())
print "Bye from Twisted developer!"
twisted_developer_day(["Customer %d" % i for i in xrange(15)])
reactor.run()
# We are now more lean than ever, our customers happy, our hosting
# bills ridiculously low and our performance stellar.
# ~*~ THE END ~*~
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
运行结果:
$ ./deferreds.py 5
------ Running example 5 ------
Goodmorning from Twisted developer
Bye from Twisted developer!
Scheduling: Installation for Customer 0
...
Callback: Finished installation for Customer 4
All done for Customer 4
Scheduling: Installation for Customer 5
...
Callback: Finished installation for Customer 14
All done for Customer 14
* Elapsed time: 9.19 seconds
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
从上面的输出中可以看到,程序运行时好像有5个处理消费者的槽。除非一个槽空出来,否则不会开始处理下一个消费者的请求。在本例中,处理时间都是3秒,所以看起来像是5个一批次地处理一样。最后得到的性能跟使用线程是一样的,但是这次只有一个线程,代码也更加简洁更容易写出正确的代码。
理解Twisted与非阻塞编程的更多相关文章
- 基于NIO的同步非阻塞编程完整案例,客户端发送请求,服务端获取数据并返回给客户端数据,客户端获取返回数据
这块还是挺复杂的,挺难理解,但是多练几遍,多看看研究研究其实也就那样,就是一个Selector轮询的过程,这里想要双向通信,客户端和服务端都需要一个Selector,并一直轮询, 直接贴代码: Ser ...
- linux 客户端 Socket 非阻塞connect编程
开发测试环境:虚拟机CentOS,windows网络调试助手 非阻塞模式有3种用途 1.三次握手同时做其他的处理.connect要花一个往返时间完成,从几毫秒的局域网到几百 ...
- 【转载】高性能IO设计 & Java NIO & 同步/异步 阻塞/非阻塞 Reactor/Proactor
开始准备看Java NIO的,这篇文章:http://xly1981.iteye.com/blog/1735862 里面提到了这篇文章 http://xmuzyq.iteye.com/blog/783 ...
- IO之同步、异步、阻塞、非阻塞 (2)
[原创链接: http://www.smithfox.com/?e=191, 转载请保留此声明, 谢谢! ] I/O Model 是一个很大的话题, 也是一个实践性很强的事情, 网上有各种说法和资料, ...
- (转)非阻塞Connect对于select时应注意问题
对于面向连接的socket类型(SOCK_STREAM,SOCK_SEQPACKET)在读写数据之前必须建立连接,首先服务器端socket必须在一个客户端知道的地址进行监听,也就是创建socket之后 ...
- 用Java实现非阻塞通信
用ServerSocket和Socket来编写服务器程序和客户程序,是Java网络编程的最基本的方式.这些服务器程序或客户程序在运行过程中常常会阻塞.例如当一个线程执行ServerSocket的acc ...
- Socket,非阻塞,fcntl
一.fcntl 用以下方法将socket设置成为非阻塞方式 int flags = fcntl(socket,F_GETFL,0); fcntl(socket,F_SETFL,flags|O_NON ...
- 面向连接的socket数据处理过程以及非阻塞connect问题
对于面向连接的socket类型(SOCK_STREAM,SOCK_SEQPACKET)在读写数据之前必须建立连接,首先服务器端socket必须在一个客户端知道的地址进行监听,也就是创建socket之后 ...
- 一文读懂阻塞、非阻塞、同步、异步IO
介绍 在谈及网络IO的时候总避不开阻塞.非阻塞.同步.异步.IO多路复用.select.poll.epoll等这几个词语.在面试的时候也会被经常问到这几个的区别.本文就来讲一下这几个词语的含义.区别以 ...
随机推荐
- 用phpstudy搭建dedecms网站验证码出不来解决方案
验证码图片不显示,这应该是很多站长朋友们最长遇到的一个问题,本地测试明明好好的,为什么传上空间或者服务器上验证码就无法显示了呢,春哥分析这可能是由于没有加载gd库扩展所引起的,那么怎么解决呢?由于引起 ...
- Android开发教程
http://www.cnblogs.com/liulikui/archive/2011/11/13/2247280.html 博客链接——>环境搭建
- Linux 挂载aliyun数据盘
适用系统:Linux(Redhat , CentOS,Debian,Ubuntu) * Linux的云服务器数据盘未做分区和格式化,可以根据以下步骤进行分区以及格式化操作. 下面的操作将会把数据盘划 ...
- CF 389 E 贪心(第一次遇到这么水的E)
http://codeforces.com/contest/389/problem/E 这道题目刚开始想的特别麻烦...但是没想到竟然是贪心 我们只需要知道偶数的时候可以对称取的,然后奇数的时候没次取 ...
- 【gcd】 最大公约数
int gcd(int a,int b) { int r; ) { r=a%b; a=b; b=r; } return a; }
- ant调用shell命令(Ubuntu)
ant中调用Makefile,使用shell中的make命令 <?xml version="1.0" encoding="utf-8" ?> < ...
- hrbustoj 1494(原题UVA 315 Network) 解题报告 tarjan求割点
主要思路:使用tarjan选取一个根节点建立一个棵搜索树,判断一个点是割点的充分必要条件是,对于一个节点u如果他的孩子节点v的low值大于等于u的出生日期dfn值,进行下一步判断,如果u是我们选的根节 ...
- ubuntu14.04英文环境下安装中文输入法
ubuntu14.04英文环境下安装中文输入法 发表于1年前(2014-07-12 20:12) 阅读(4478) | 评论(0) 3人收藏此文章, 我要收藏 赞1 9月19日成都 OSC 源创会 ...
- SUSE Linux Enterprise Server 11 SP1安装图解教程
一.说明:操作系统:SUSE Linux Enterprise Server 11 SP1下载地址:需要注册才能下载二.安装系统 用启动盘成功引导之后,出现下面的界面 系统运维 温馨提醒:qihang ...
- Android的init过程详解(一)
Android的init过程详解(一) Android的init过程(二):初始化语言(init.rc)解析 本文使用的软件版本 Android:4.2.2 Linux内核:3.1.10 本文及后续几 ...