KNN算法--物以类聚,人以群分
KNN(K Nearest Neighbors,K近邻 )算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判断(投票法)或者回归。如果K=1,那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义。对于监督学习,数据都有明确的label(分类针对离散分布,回归针对连续分布),根据机器学习产生的模型可以将新数据分到一个明确的类或得到一个预测值。对于非监督学习,数据没有label,机器学习出的模型是从数据中提取出来的pattern(提取决定性特征或者聚类等)。例如聚类是机器根据学习得到的模型来判断新数据“更像”哪些原数据集合。KNN算法用于分类时,每个训练数据都有明确的label,也可以明确的判断出新数据的label,KNN用于回归时也会根据邻居的值预测出一个明确的值,因此KNN属于监督学习。
KNN算法的计算过程:
- 选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中的数据点的距离
- 按照距离递增次序进行排序,选取与当前距离最小的k个点
- 对于离散分类,返回k个点出现频率最多的类别作预测分类;对于回归则返回k个点的加权值作为预测值
KNN算法--物以类聚,人以群分的更多相关文章
- KNN算法 - 数据挖掘算法(3)
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法 ...
- KNN算法在保险业精准营销中的应用
版权所有,可以转载,禁止修改.转载请注明作者以及原文链接. 一.KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法 ...
- 机器学习回顾篇(6):KNN算法
1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法, ...
- kNN算法python实现和简单数字识别
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- KNN算法
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...
- 什么是 kNN 算法?
学习 machine learning 的最低要求是什么? 我发觉要求可以很低,甚至初中程度已经可以. 首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可. 数学方面 ...
- 数据挖掘之KNN算法(C#实现)
在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅 ...
- 机器学习笔记--KNN算法2-实战部分
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...
随机推荐
- sockaddr结构体
sockaddr 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 一,用于存储参与(IP)Windows套接字通信的计算机上的一个internet协议(IP)地址.为了统一地 ...
- led.c驱动框架
Makefile: obj-m += led.o ################################################ KERNEL = /home/linux--FS21 ...
- python之lambda、filter、map、reduce的用法说明
python中有一些非常有趣的函数,面试的时候可能会遇到.今天也来总结一下,不过该类的网上资料也相当多,也没多少干货,只是习惯性将一些容易遗忘的功能进行整理. lambda 为关键字.filter,m ...
- DNS与获取
今天翻看twitter的源码的时候看到了一下内容: <link rel=”dns-prefetch” href=”http://a0.twimg.com”/> <link rel=” ...
- ActiveMQ讯息传送机制以及ACK机制
http://blog.csdn.net/lulongzhou_llz/article/details/42270113 ActiveMQ消息传送机制以及ACK机制详解 AcitveMQ是作为一种消息 ...
- C# 开发系列(二)
1. 参考文档:http://www.yiibai.com/csharp/csharp_environment_setup.html 2. C# ,ASP.NET HTTP Authorization ...
- apache、nginx、iis 全球分布
从下图(2012年8月份的数据)来看,来自俄罗斯的Nginx服务器,主要使用区域也集中在俄罗斯及周边国家.微软的IIS,在中国使用最多,占其总份额的57.6%,其他国家如埃及.沙特阿拉伯等国家也基本使 ...
- hadoop+海量数据面试题汇总(一)
hadoop面试题 Q1. Name the most common InputFormats defined in Hadoop? Which one is default ? Following ...
- iOS 数字每隔3位添加一个逗号的
+(NSString *)countNumAndChangeformat:(NSString *)num { ; long long int a = num.longLongValue; ) { co ...
- JAVA解析HTML,获取待定元素属性
Document doc = Jsoup.parseBodyFragment(previewHtml); //html内容解析为Document int index = 0; StringBuffer ...