参考网址:http://blog.163.com/suntroop@yeah/blog/static/17012103120115185927194/

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。

 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= ? W(e), e∈ M = ? L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= ? W(e), e∈ M' <= ? L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
 
由上述定理,我们可以通过来不断修改可行顶标,得到等价子图,从而求出最佳匹配。
就像匈牙利算法一样,我们依次为每一个顶点 i 寻找增广路径,如果寻找增广路径失败,我们就修改相应的可行顶标,来得到增广路径。
如图:
|  1  2  3  |
|  3  2  4  |
|  2  3  5  |
若要对这个完全二分图求最佳匹配
 
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足 Lx(x)+ Ly(y)== W(x,y) ) 如下:
对于该图,运用匈牙利算法对 X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边 ):
 对 X 部顶点 2 求增广路径失败,寻找增广路径的过程为 X 2-> Y 3-> X 1。我们把寻找增广路径失败的 DFS 的交错树中,在 X 部顶点集称之为 S, 在 Y 部的顶点集称之为 T。则 S= { 1, 2 },T= { 3 }。现在我们就通过修改顶标值来扩大等价子图,如何修改。
 
1)   我们寻找一个 d 值,使得 d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y? T },因些,这时 d= min{
Lx(1)+Ly(1)-W(1,1),  Lx(1)+Ly(2)-W(1,2),  Lx(2)+Ly(1)-W(2,1),  Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2,  4+0-3,  4+0-2 }= min{ 2, 1, 1, 2 }= 1。
寻找最小的 d 是为了保证修改后仍满足性质对于边 <x,y> 有 Lx(x)+ Ly(y)>= W(x,y)。
 
2)   然后对于顶点 x
1. 如果 x∈ S 则 Lx(x)= Lx(x)- d。
2. 如果 x∈ T 则 Ly(x)= Ly(x)+ d。
3. 其它情况保持不变。
如此修改后,我们发现对于边<x,y>,顶标 Lx(x)+ Ly(y) 的值为
1.  Lx(x)- d+ Ly(y)+ d,  x∈ S, y∈ T。
2.  Lx(x)+ Ly(y),  x? S,  y? T。
3.  Lx(x)- d+ Ly(y), x∈ S, y? T。
4.  Lx(x)+ Ly(y)+ d, x? S,  y∈ T。
易知,修改后对于任何边仍满足 Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了 d,如此定会使等价子图扩大。
 
就上例而言: 修改后 Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。
这时 Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
 
如此按以上方法,得到等价子图的完美匹配。
 
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y? T }
这样能在寻找增广路径的时候就顺便将 slack 求出。

Pku 2195 Going Home

 Pku  Going Home

二分图匹配之KM求二分图最佳匹配算法的更多相关文章

  1. hihoCoder 1393 网络流三·二分图多重匹配(Dinic求二分图最大多重匹配)

    #1393 : 网络流三·二分图多重匹配 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 学校的秋季运动会即将开始,为了决定参赛人员,各个班又开始忙碌起来. 小Hi和小H ...

  2. [ACM] HDU 3395 Special Fish (最大重量二分图匹配,KM算法)

    Special Fish Problem Description There is a kind of special fish in the East Lake where is closed to ...

  3. 二分图匹配(KM算法)n^3 分类: ACM TYPE 2014-10-01 21:46 98人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> const ...

  4. 二分图匹配(KM算法)n^4 分类: ACM TYPE 2014-10-04 11:36 88人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> #incl ...

  5. HDU 1533:Going Home(KM算法求二分图最小权匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 Going Home Problem Description   On a grid map there ...

  6. UVa 二分图匹配 Examples

    这些都是刘汝佳的算法训练指南上的例题,基本包括了常见的几种二分图匹配的算法. 二分图是这样一个图,顶点分成两个不相交的集合X , Y中,其中同一个集合中没有边,所有的边关联在两个集合中. 给定一个二分 ...

  7. Sorting Slides(二分图匹配——确定唯一匹配边)

    题目描述: Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he is not ...

  8. P3386 【模板】二分图匹配 -网络流版

    二分图匹配 题目背景 二分图 感谢@一扶苏一 提供的hack数据 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+ ...

  9. hdu_1045Fire Net(二分图匹配)

    hdu_1045Fire Net(二分图匹配) 标签: 图论 二分图匹配 题目链接 Fire Net Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...

随机推荐

  1. Android:关于Edittext的一些设置

    1.自动弹出输入框. et_order_search.setFocusableInTouchMode(true); et_order_search.requestFocus(); CmzBossApp ...

  2. Python编程工具IDLE快捷键

    IDLE编辑器快捷键 自动补全代码        Alt+/(查找编辑器内已经写过的代码来补全) 补全提示              Ctrl+Shift+space(默认与输入法冲突,修改之) (方 ...

  3. HTML link标签media参数

    写html这么久了,今天才发现link标签还有个media参数,赶紧把它补回来,虽然现在没有用到,但是不能不知道它 定义和用法 media 属性规定被链接文档将显示在什么设备上. media 属性用于 ...

  4. Revenge of GCD HDU5019

    Description In mathematics, the greatest common divisor (gcd), also known as the greatest common fac ...

  5. 5个可用提高Godaddy主机速度的第三方CDN加速服务商

    毕竟Godaddy主机数据中心位于美国.新加坡.欧洲三个数据中心,一般我们都会选择美国数据中心,相比较其他2个机房的速度是快和稳定的,很多人要说为什么新加坡数据中心速度不好呢?因为目前的新加坡机房不是 ...

  6. noip2015Day2T2-子串

    题目描述 Description 有两个仅包含小写英文字母的字符串A和B.现在要从字符串A中取出k个互不重叠的非空子串,然后把这k个子串按照其在字符串A中出现的顺序依次连接起来得到一个新的字符串,请问 ...

  7. L2-010. 排座位

    L2-010. 排座位 题目链接:https://www.patest.cn/contests/gplt/L2-010 并查集 相关题目:L2-007. 家庭房产,L3-003. 社交集群 下午打的时 ...

  8. 实验吧Web-PHP大法

    笔记 字符串比对解析,与大小写无关. eregi()函数 语法: eregi(string pattern, string string, array [regs]); 返回值: 整数/数组 特点:P ...

  9. Struts2权威指南笔记

    Struts2权威指南笔记 1.mvc特点包括: ① 多个视图可以对应一个模型 ② 模型返回的数据与显示逻辑分离 ③ 应用层被分隔为三层,降低了各层之间的耦合,提供了应用的可扩展性 ④ 控制层的概念也 ...

  10. Markdown 基础

    How to use Markdown H1 text. H2 text. H3 text. H4 text. H5 text. H6 text. Text This is italic text. ...