给出1,2,3...m

任取7个互不同样的数a1,a2,a3,a4,a5,a6,a7

一个数的幸运度是数位上4或7的个数

比方244。470幸运度是2。

44434,7276727。4747,7474,幸运度都是4。

求出满足a1,a2,a3,a4,a5,a6,a7这种前6个数的幸运度之和严格小于第七个数的幸运度排列共同拥有多少种

1.先求出数组t

t[i]代表1-m中幸运度为i的数的个数。

2.有了t数组后。问题变为一个排列组合问题(枚举a7幸运度。求有多少排列满足前6幸运度之和小于a7幸运度,再求和)

t数组怎么得到?

我们定义

d[i][j][0]为
0到从第1数位開始到第i数位(包含第i数位)组成的数中幸运度为j且不含自身(小于自身)的个数

d[i][j][1]为
0到从第1数位開始到第i数位(包含第i数位)组成的数中幸运度为j且包含自身(小于自身)的个数

比如m=14632,对i=2来说。14是自身;对i=3来说。146是自身。

那么

基于dp[i-1][j]转移方式例如以下

比如m=14632

我们处理好了前两位,到第三位6时

从0開始枚举0,1,2,3,4,5,6,7,8,9

首先全部数(0-5,6,7-9)都能够安插在dp[2][][0]后(显然是dp[3][][0]+=)

假设是小于6的数,还能够安插在dp[2][][1]后(显然是dp[3][][0]+=)

假设是等于6的数。还得有dp[3][][1]+=dp[2][][1]

第二维随情况变化

怎么处理例如以下的问题(枚举a7幸运度,求有多少排列满足前6幸运度之和小于a7幸运度,再求和)

我们能够拿dfs来解决

首先试着设计这个dfs

状态我们能够这么挂

dfs(int now_lucky_num,int max_lucky_num,int seq)

now_lucky_num:当前的幸运值和

max_lucky_num:幸运值上限(即a7幸运值)

seq:正在处理第几个数(正在处理a几来着)

我们要枚举全部的max_lucky_num从0到9

须要一个cur变量来记录当前的方案数目。一開始cur=t[i]

dfs中。一旦到了第七个数 或者 now_lucky_num>=max_lucky_num。就要return,另外一种情况在return之前还得把cur加到终于的答案ans上

在dfs中枚举当前a[seq]的幸运度情况。i从0-9。假设t[i]不为0的话。t[i]--后进入下一个dfs,完毕后把t[i]++复原

这样就求得了ans

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
using namespace std;
long long f[11][11][2];
long long t[11];
long long n[11];
long long ans=0;
const long long MOD=1e9+7;
long long cur=1;
void dfs(long long now,long long limit,long long number){
if(now>=limit) return;
if(number==7){
ans+=(cur%MOD);
return;
}
for(long long i=0;i<=9;i++){
if(n[i]){
long long tmpcur=cur;
cur*=n[i];
cur%=MOD;
n[i]--;
dfs(now+i,limit,number+1);
cur=tmpcur;
n[i]++;
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("G:/in.txt","r",stdin);
//freopen("G:/myout.txt","w",stdout);
#endif
long long m;
cin>>m;
long long tmp=m;
for(long long i=10;i>=0 && tmp;i--){
t[i]=tmp%10;
tmp/=10;
}
f[0][0][1]=1;
for(long long i=1;i<=10;i++){
for(long long j=0;j<=10;j++){
for(long long d=0;d<=9;d++){
if(d<t[i]){
f[i][j+(d==4 || d==7)][0]+=f[i-1][j][0];
f[i][j+(d==4 || d==7)][0]+=f[i-1][j][1];
}else if(d==t[i]){
f[i][j+(d==4 || d==7)][1]+=f[i-1][j][1];
f[i][j+(d==4 || d==7)][0]+=f[i-1][j][0];
}else{
f[i][j+(d==4 || d==7)][0]+=f[i-1][j][0];
}
}
}
}
for(long long i=0;i<=10;i++)
n[i]=f[10][i][0]+f[10][i][1]-(i==0);
for(long long i=0;i<=9;i++){
cur=n[i];
dfs(0,i,1);
}
cout<<ans%MOD<<endl;
return 0;
}

CF 258B Little Elephant and Elections [dp+组合]的更多相关文章

  1. Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索

    题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...

  2. Little Elephant and Elections CodeForces - 258B

    Little Elephant and Elections CodeForces - 258B 题意:给出m,在1-m中先找出一个数x,再在剩下数中找出6个不同的数y1,...,y6,使得y1到y6中 ...

  3. hdu 4945 2048 (dp+组合的数目)

    2048 Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  4. Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)

    数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...

  5. CF #374 (Div. 2) C. Journey dp

    1.CF #374 (Div. 2)    C.  Journey 2.总结:好题,这一道题,WA,MLE,TLE,RE,各种姿势都来了一遍.. 3.题意:有向无环图,找出第1个点到第n个点的一条路径 ...

  6. ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...

  7. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  8. HihoCoder 1075 开锁魔法III(概率DP+组合)

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  9. Codeforces 918D MADMAX 图上dp 组合游戏

    题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...

随机推荐

  1. Pison geeker

    Pison on scriptogr.am Pison Abraham Lincoln: "Nearly all men can stand adversity, but if you wa ...

  2. pomelo 协议

    分析的是hybridconnector,使用的chatofpomelo-websocket(pomelo为0.7.0) 參考:https://github.com/NetEase/pomelo/wik ...

  3. shell中判断用法

    测试结构: 测试命令可用于测试表达式条件的真假,true,则返回0,false,则返回非0:这一点c/c++有区别:       格式: test  expression #expression是一个 ...

  4. Nmon 性能:分析 AIX 和 Linux 性能的免费工具

    原文摘自: http://www.ibm.com/developerworks/cn/aix/library/analyze_aix/ 官网:http://www.ibm.com/developerw ...

  5. SQL Server 基础 01 数据库、表操作

    对着书慢慢学习,一天一点点! 数据库操作 (create.alter.drop)  --3-3-1 /create database 语句创建数据库 create database testSQL - ...

  6. IOS SWIFT 网络请求JSON解析 基础一

    前言:移动互联网时代,网络通信已经是手机端必不可少的功能.应用中也必不可少地使用了网络通信,增强客户端与服务器交互.使用NSURLConnection实现HTTP的通信.NSURLConnection ...

  7. django-form表单的提交

    <form action="/blog/" method="get"> 如果runserver默认启用127.0.0.1:8000的话,且上面这个f ...

  8. JavaScript对滚动栏的操作

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  9. Android如何监听蓝牙耳机的按键事件

    写在前面: 直接想要代码很简单,你直接把滚动条拉到最底端就可以看到.如果想要十分地了解为什么,那就按照我规划的一步一步来理解.以下测试环境以手头上有的「Bluedio + 红米手机」. 1.蓝牙耳机的 ...

  10. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...