Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 9715    Accepted Submission(s): 4623
Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage
ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into
that ditch.

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.


Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

 
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections
points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water
will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond.

 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 

题意:给定m条边和n个顶点(从1開始)。边为(u。v,c)源点是1,汇点是n。求最大流。

题解:Dinic + 链式前向星,新模板get.

#include <stdio.h>
#include <string.h> #define maxn 205
#define maxm 410
#define inf 0x3f3f3f3f int head[maxn], n, m, source, sink, id; // n个点m条边
struct Node {
int u, v, c, next;
} E[maxm];
int que[maxn], pre[maxn], Layer[maxn];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].u = u; E[id].v = v;
E[id].c = c; E[id].next = head[u];
head[u] = id++; E[id].u = v; E[id].v = u;
E[id].c = 0; E[id].next = head[v];
head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
memset(head, -1, sizeof(int) * (n + 1));
source = 1; sink = n;
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} bool countLayer() {
memset(Layer, 0, sizeof(int) * (n + 1));
int id = 0, front = 0, u, v, i;
Layer[source] = 1; que[id++] = source;
while(front != id) {
u = que[front++];
for(i = head[u]; i != -1; i = E[i].next) {
v = E[i].v;
if(E[i].c && !Layer[v]) {
Layer[v] = Layer[u] + 1;
if(v == sink) return true;
else que[id++] = v;
}
}
}
return false;
} int Dinic() {
int i, u, v, minCut, maxFlow = 0, pos, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(bool) * (n + 1));
memset(pre, -1, sizeof(int) * (n + 1));
que[id++] = source; vis[source] = 1;
while(id) {
u = que[id - 1];
if(u == sink) {
minCut = inf;
for(i = pre[sink]; i != -1; i = pre[E[i].u])
if(minCut > E[i].c) {
minCut = E[i].c; pos = E[i].u;
}
maxFlow += minCut;
for(i = pre[sink]; i != -1; i = pre[E[i].u]) {
E[i].c -= minCut;
E[i^1].c += minCut;
}
while(que[id-1] != pos)
vis[que[--id]] = 0;
} else {
for(i = head[u]; i != -1; i = E[i].next)
if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) {
vis[v] = 1; que[id++] = v; pre[v] = i; break;
}
if(i == -1) --id;
}
}
}
return maxFlow;
} void solve() {
printf("%d\n", Dinic());
} int main() {
while(scanf("%d%d", &m, &n) == 2) {
getMap();
solve();
}
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

HDU1532 Drainage Ditches 【最大流量】的更多相关文章

  1. hdu-----(1532)Drainage Ditches(最大流问题)

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. HDU1532 Drainage Ditches 网络流EK算法

    Drainage Ditches Problem Description Every time it rains on Farmer John's fields, a pond forms over ...

  3. HDU1532 Drainage Ditches SAP+链式前向星

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. POJ1273&&Hdu1532 Drainage Ditches(最大流dinic) 2017-02-11 16:28 54人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU-1532 Drainage Ditches,人生第一道网络流!

    Drainage Ditches 自己拉的专题里面没有这题,网上找博客学习网络流的时候看到闯亮学长的博客然后看到这个网络流入门题!随手一敲WA了几发看讨论区才发现坑点! 本题采用的是Edmonds-K ...

  6. HDU1532 Drainage Ditches —— 最大流(sap算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 Drainage Ditches Time Limit: 2000/1000 MS (Java/ ...

  7. HDU-1532 Drainage Ditches (最大流,EK算法模板)

    题目大意:最大流的模板题...源点是0,汇点是n-1. 代码如下: # include<iostream> # include<cstdio> # include<cma ...

  8. [HDU1532]Drainage Ditches

    最大流模板题 今天补最大流,先写道模板题,顺便写点对它的理解 最大流问题就是给一个幽香有向图,每一条边有容量,问若从$s$点放水,最多会有多少水流到$t$ 为了解决整个问题,第一步我们当然要找到一条路 ...

  9. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

随机推荐

  1. POJ 3684 Priest John&#39;s Busiest Day 2-SAT+输出路径

    强连通算法推断是否满足2-sat,然后反向建图,拓扑排序+染色. 一种选择是从 起点開始,还有一种是终点-持续时间那个点 開始. 若2个婚礼的某2种时间线段相交,则有矛盾,建边. easy出错的地方就 ...

  2. Android适应方案汇总(三)

    在Android适应方案汇总(一个).(两)在.我们理解一些基本概念. 那么详细的开发,我们应该重视起来. 首先,我们需要知道.关键的事实是,这两个适配器: (1).这点在单位的使用上用dp.sp以及 ...

  3. 查看linux信息

    1.操作系统内核 cat /proc/version 2.操作系统版本 head -n 1 /etc/issue # 查看操作系统版本 3.查看cpu信息 more /proc/cpuinfo --- ...

  4. POJ2239 Selecting Courses【二部图最大匹配】

    主题链接: http://poj.org/problem?id=2239 题目大意: 学校总共同拥有N门课程,而且学校规定每天上12节可,一周上7天. 给你每门课每周上的次数,和哪一天哪一节 课上的. ...

  5. 《反project核心原则》说明

      致亲爱的中国读者: 大家好 !我是<逆向project核心原理> 作者 李承远(ReverseCore). (韩文博客地址:www.reversecore.com) 首先.非常高兴我的 ...

  6. [LeetCode107]Binary Tree Level Order Traversal II 二叉树层次遍历

    题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...

  7. [LeetCode238]Product of Array Except Self

    题目: Given an array of n integers where n > 1, nums, return an array output such that output[i] is ...

  8. 【新秀疯狂UML系列】——面向对象的技术

    从软质工作开始,我们来到与面向对象的接触,接下来的学习材料似乎已经提到了面向对象,在与她的朋友去一个.所以,我们必须知道她多一点点. 一.何为面向对象? 面向对象(Object Oriented).是 ...

  9. 流量计算-Jstorm提交Topology过程(下一个)

    马上部分流量计算-Jstorm提交Topology过程(上), 5.上篇任务已经ServiceHandler.submitTopologyWithOpts()方法.在该方法中,会实例化一个Topolo ...

  10. DisplayContent、StackBox、TaskStack笔记

    文章仅零散记录自己的一点理解,仅供自己參考. 每一个显示设备,都有一个Display对象,DisplayManagerService专门管理这些Display. 1.DisplayContent() ...