codeforces 723F : st-Spanning Tree
Description
There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.
The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.
The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.
Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 200, 0 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.
The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.
It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.
Pay attention that for hacks, you can only use tests consisting of one testset, so t should be equal to one.
For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.
In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.
2
5 5
2 1
4 5
2 3
1 3
3 5
7 2
3 7
4 2
3
1 3
3 5
5 4
3 2
2 1
3
2 4
3 7
正解:构造+贪心
解题报告:
这道题比赛的时候%王队的代码,结果王队写萎了一个地方,我不仅写萎了同一个地方,还自己弄出了一个新错误,直接FST。考虑我们希望使得s和t的度数尽可能小。那么显然,我们需要把不含s和t的边能连上的就连上,那么我们可以得到S、T和若干连通块。并且这些连通块之间没有边。我们考虑我们优先选择S、T和连通块相连,能连则连。
其次我们考虑如果直接连接S和T,事实上是不划算的,因为如果把S和T分别和一个未被连入整体的连通块的话,同样减少一点度数,可以得到更优秀的答案(多连入了一个连通块)。所以我们接着考虑连接某个连通块,他与S、T都相连。需要注意:找到一个这样的连通块之后,我们只需要之后的对于这种连通块我们都只需要连上S或者T就可以了,显然选择度数比较多的那个会更优。最后我们再考虑S、T直接相连的情况。
有很多细节,注意一下。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
const int MAXM = ;
int n,m,ecnt,s,t,ds,dt,root;
int ans[MAXM],cnt,father[MAXN];
bool use[MAXM];
int ok[MAXM][],jilu[MAXN][];
struct edge{
int x,y;
}e[MAXM];
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline void rr(){ printf("No"); exit(); }
inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=m;i++) e[i].x=getint(),e[i].y=getint();
s=getint(); t=getint(); ds=getint(); dt=getint(); int r1,r2; for(int i=;i<=n;i++) father[i]=i;
for(int i=;i<=m;i++) {
if(e[i].x==s || e[i].y==s) continue; if(e[i].x==t || e[i].y==t) continue;
r1=find(e[i].x); r2=find(e[i].y);
if(r1!=r2) { father[r1]=r2; ans[++cnt]=i; use[i]=; }
}
bool flag=false;
for(int i=;i<=m;i++) {
if(use[i]) continue; if((e[i].x==s && e[i].y==t) || (e[i].x==t && e[i].y==s) ) { flag=true; root=i; continue; }
if(e[i].x==s) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==s) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
if(e[i].x==t) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==t) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
}
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(i==s || i==t) continue;
if(ok[i][]+ok[i][]==) rr();
else if(ok[i][]+ok[i][]==) {
if(ok[i][]) ds--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(s),r2=find(i),father[r2]=r1;
else if(ok[i][]) dt--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(t),r2=find(i),father[r2]=r1;
}
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
ds--; dt--; r1=find(s); r2=find(i); father[r2]=r1; r1=find(i); r2=find(t); father[r1]=r2;
ans[++cnt]=jilu[i][]; ans[++cnt]=jilu[i][];
use[jilu[i][]]=use[jilu[i][]]=;
break;
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
if(find(i)==find(s)) continue;
if(ds>dt) ds--,ans[++cnt]=jilu[i][];
else dt--,ans[++cnt]=jilu[i][];
}
if(ds< || dt<) rr();
if(find(s)!=find(t)) {
if(flag) { ds--,dt--,ans[++cnt]=root; }
else rr();
}
if(ds< || dt<) rr();
printf("Yes\n");
for(int i=;i<=cnt;i++) printf("%d %d\n",e[ans[i]].x,e[ans[i]].y);
} int main()
{
work();
return ;
}
codeforces 723F : st-Spanning Tree的更多相关文章
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)
Bichrome Spanning Tree 题意: 给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色. 现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成 ...
- 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- codeforces 342E :Xenia and Tree
Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...
- Codeforces 1682 D Circular Spanning Tree
题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
随机推荐
- Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例
概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解Arra ...
- QT 网络编程一
QT如果要进行网络编程首先需要在.pro中添加如下代码:QT += network 在头文件中包含相关头文件 #include <QHostInfo> #include <QNetw ...
- 端口被占用的解决方案 sql server 10048 错误
一大早发现sql server服务无法启动,10048错误,一查是端口占用. 先找到哪个进程,结束即可. cmd命令, netstat /ano|findset "1433" 出现 ...
- ajax请求加载Loading或错误提示
<div id="loadingDiv" style="color:#f39800;">Loading...</div> <scr ...
- AngularJS引入Echarts的Demo
最近要用到图表展示,想了想,还是首选Echarts,HighCharts和D3.js备用吧, 而项目中也用到了AngularJS,所以需要把Echarts引入到AngularJs中一起使用, 试了试, ...
- JavaWeb之jsp编译为java源码的文件地址
..\..\workspace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\work\Catalina\localhost\project_ ...
- rabbitmq 相关方法
//连接$conn_args = array( 'host'=>'127.0.0.1' , 'port'=> '5672', 'login'=>'guest' , 'password ...
- display:block、display:inline与displayinline:block的概念和区别
总体概念 block和inline这两个概念是简略的说法,完整确切的说应该是 block-level elements (块级元素) 和 inline elements (内联元素).block元素通 ...
- 【URAL 1018】Binary Apple Tree
http://vjudge.net/problem/17662 loli蜜汁(面向高一)树形dp水题 #include<cstdio> #include<cstring> #i ...
- hdu4990 矩阵
C - Reading comprehension Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...