Description

There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.

The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.

Input

The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.

Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 200, 0 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.

The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.

It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.

Pay attention that for hacks, you can only use tests consisting of one testset, so t should be equal to one.

Output

For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.

In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.

Example
Input
2
5 5
2 1
4 5
2 3
1 3
3 5
7 2
3 7
4 2
Output
3
1 3
3 5
5 4
3 2
2 1
3
2 4
3 7

正解:构造+贪心

解题报告:

  这道题比赛的时候%王队的代码,结果王队写萎了一个地方,我不仅写萎了同一个地方,还自己弄出了一个新错误,直接FST。考虑我们希望使得s和t的度数尽可能小。那么显然,我们需要把不含s和t的边能连上的就连上,那么我们可以得到S、T和若干连通块。并且这些连通块之间没有边。我们考虑我们优先选择S、T和连通块相连,能连则连。

  其次我们考虑如果直接连接S和T,事实上是不划算的,因为如果把S和T分别和一个未被连入整体的连通块的话,同样减少一点度数,可以得到更优秀的答案(多连入了一个连通块)。所以我们接着考虑连接某个连通块,他与S、T都相连。需要注意:找到一个这样的连通块之后,我们只需要之后的对于这种连通块我们都只需要连上S或者T就可以了,显然选择度数比较多的那个会更优。最后我们再考虑S、T直接相连的情况。

  有很多细节,注意一下。

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
const int MAXM = ;
int n,m,ecnt,s,t,ds,dt,root;
int ans[MAXM],cnt,father[MAXN];
bool use[MAXM];
int ok[MAXM][],jilu[MAXN][];
struct edge{
int x,y;
}e[MAXM];
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline void rr(){ printf("No"); exit(); }
inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=m;i++) e[i].x=getint(),e[i].y=getint();
s=getint(); t=getint(); ds=getint(); dt=getint(); int r1,r2; for(int i=;i<=n;i++) father[i]=i;
for(int i=;i<=m;i++) {
if(e[i].x==s || e[i].y==s) continue; if(e[i].x==t || e[i].y==t) continue;
r1=find(e[i].x); r2=find(e[i].y);
if(r1!=r2) { father[r1]=r2; ans[++cnt]=i; use[i]=; }
}
bool flag=false;
for(int i=;i<=m;i++) {
if(use[i]) continue; if((e[i].x==s && e[i].y==t) || (e[i].x==t && e[i].y==s) ) { flag=true; root=i; continue; }
if(e[i].x==s) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==s) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
if(e[i].x==t) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==t) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
}
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(i==s || i==t) continue;
if(ok[i][]+ok[i][]==) rr();
else if(ok[i][]+ok[i][]==) {
if(ok[i][]) ds--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(s),r2=find(i),father[r2]=r1;
else if(ok[i][]) dt--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(t),r2=find(i),father[r2]=r1;
}
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
ds--; dt--; r1=find(s); r2=find(i); father[r2]=r1; r1=find(i); r2=find(t); father[r1]=r2;
ans[++cnt]=jilu[i][]; ans[++cnt]=jilu[i][];
use[jilu[i][]]=use[jilu[i][]]=;
break;
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
if(find(i)==find(s)) continue;
if(ds>dt) ds--,ans[++cnt]=jilu[i][];
else dt--,ans[++cnt]=jilu[i][];
}
if(ds< || dt<) rr();
if(find(s)!=find(t)) {
if(flag) { ds--,dt--,ans[++cnt]=root; }
else rr();
}
if(ds< || dt<) rr();
printf("Yes\n");
for(int i=;i<=cnt;i++) printf("%d %d\n",e[ans[i]].x,e[ans[i]].y);
} int main()
{
work();
return ;
}

codeforces 723F : st-Spanning Tree的更多相关文章

  1. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)

    Bichrome Spanning Tree 题意: 给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色. 现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成 ...

  3. 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  5. Codeforces 1682 D Circular Spanning Tree

    题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

随机推荐

  1. js Dialog 去掉右上角的X关闭功能

    用到 dialog弹出框时,不想要右上角的X 关闭功能,只是做个提示信息显示,下面是具体的去掉方法,大家可以参考下 再用到 dialog弹出框时,不想要右上角的X 关闭功能,只是做个提示信息显示. 在 ...

  2. Java集合系列:-----------05LinkedList的底层实现

    前面,我们已经学习了ArrayList,并了解了fail-fast机制.这一章我们接着学习List的实现类--LinkedList.和学习ArrayList一样,接下来呢,我们先对LinkedList ...

  3. HTML5商城开发二 通过位移实现拖动效果

    1.效果 在该区域内,手按住拖动,该模块可上下滑动,至最顶或最底部,滑动出现空白区域将自动缩回

  4. CentOS搭建socket5代理服务器

    1.安装socket5依赖包 yum -y install gcc automake make pam-devel openldap-devel cyrus-sasl-devel   2.下载ss5并 ...

  5. JAVA和android 环境配置

    1.设置classpath .;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME\lib\tools.jar; 2.JAVA_HOME D:\Program Files\Java\j ...

  6. 模块度与Louvain社区发现算法

    Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度. 模块度(Modularity) 模块度是评估一个社 ...

  7. 命令行下 mysql 不是内部或外部命令排查方法

    首先确定你没有更改过MySQL的安装目录.如果你进行过改名或者更改了你的路径,那么要在相应的配置文件中更改你的你路径.找到C:\Windows\my.ini文件,更改你配置的文件路径,改成你修改后的路 ...

  8. bootstrap-datepicker带中文的js文件

    ) { $(".datepicker").datepicker({ language: "zh-CN", autoclose: true,//选中之后自动隐藏日 ...

  9. Nodejs进阶:如何将图片转成datauri嵌入到网页中去

    问题:将图片转成datauri 今天,在QQ群有个群友问了个问题:"nodejs读取图片,转成base64,怎么读取呢?" 想了一下,他想问的应该是 怎么样把图片嵌入到网页中去,即 ...

  10. matlab中的xcorr 自相关函数

    转载自 http://blog.163.com/to_be_myself/blog/static/176060227201101762159227/ Matlab中用于计算自相关函数的指令是xcorr ...