Description

There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.

The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.

Input

The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.

Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 200, 0 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.

The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.

It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.

Pay attention that for hacks, you can only use tests consisting of one testset, so t should be equal to one.

Output

For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.

In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.

Example
Input
2
5 5
2 1
4 5
2 3
1 3
3 5
7 2
3 7
4 2
Output
3
1 3
3 5
5 4
3 2
2 1
3
2 4
3 7

正解:构造+贪心

解题报告:

  这道题比赛的时候%王队的代码,结果王队写萎了一个地方,我不仅写萎了同一个地方,还自己弄出了一个新错误,直接FST。考虑我们希望使得s和t的度数尽可能小。那么显然,我们需要把不含s和t的边能连上的就连上,那么我们可以得到S、T和若干连通块。并且这些连通块之间没有边。我们考虑我们优先选择S、T和连通块相连,能连则连。

  其次我们考虑如果直接连接S和T,事实上是不划算的,因为如果把S和T分别和一个未被连入整体的连通块的话,同样减少一点度数,可以得到更优秀的答案(多连入了一个连通块)。所以我们接着考虑连接某个连通块,他与S、T都相连。需要注意:找到一个这样的连通块之后,我们只需要之后的对于这种连通块我们都只需要连上S或者T就可以了,显然选择度数比较多的那个会更优。最后我们再考虑S、T直接相连的情况。

  有很多细节,注意一下。

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
const int MAXM = ;
int n,m,ecnt,s,t,ds,dt,root;
int ans[MAXM],cnt,father[MAXN];
bool use[MAXM];
int ok[MAXM][],jilu[MAXN][];
struct edge{
int x,y;
}e[MAXM];
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline void rr(){ printf("No"); exit(); }
inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=m;i++) e[i].x=getint(),e[i].y=getint();
s=getint(); t=getint(); ds=getint(); dt=getint(); int r1,r2; for(int i=;i<=n;i++) father[i]=i;
for(int i=;i<=m;i++) {
if(e[i].x==s || e[i].y==s) continue; if(e[i].x==t || e[i].y==t) continue;
r1=find(e[i].x); r2=find(e[i].y);
if(r1!=r2) { father[r1]=r2; ans[++cnt]=i; use[i]=; }
}
bool flag=false;
for(int i=;i<=m;i++) {
if(use[i]) continue; if((e[i].x==s && e[i].y==t) || (e[i].x==t && e[i].y==s) ) { flag=true; root=i; continue; }
if(e[i].x==s) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==s) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
if(e[i].x==t) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
if(e[i].y==t) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
}
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(i==s || i==t) continue;
if(ok[i][]+ok[i][]==) rr();
else if(ok[i][]+ok[i][]==) {
if(ok[i][]) ds--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(s),r2=find(i),father[r2]=r1;
else if(ok[i][]) dt--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(t),r2=find(i),father[r2]=r1;
}
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
ds--; dt--; r1=find(s); r2=find(i); father[r2]=r1; r1=find(i); r2=find(t); father[r1]=r2;
ans[++cnt]=jilu[i][]; ans[++cnt]=jilu[i][];
use[jilu[i][]]=use[jilu[i][]]=;
break;
}
if(ds< || dt<) rr();
for(int i=;i<=n;i++) {
if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
if(find(i)==find(s)) continue;
if(ds>dt) ds--,ans[++cnt]=jilu[i][];
else dt--,ans[++cnt]=jilu[i][];
}
if(ds< || dt<) rr();
if(find(s)!=find(t)) {
if(flag) { ds--,dt--,ans[++cnt]=root; }
else rr();
}
if(ds< || dt<) rr();
printf("Yes\n");
for(int i=;i<=cnt;i++) printf("%d %d\n",e[ans[i]].x,e[ans[i]].y);
} int main()
{
work();
return ;
}

codeforces 723F : st-Spanning Tree的更多相关文章

  1. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)

    Bichrome Spanning Tree 题意: 给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色. 现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成 ...

  3. 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  5. Codeforces 1682 D Circular Spanning Tree

    题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

随机推荐

  1. 临时表之IF-ELSE

    1.解决输出单列到临时表 场景:存储过程传入id,id为缺省的过滤条件,如果id为0,则查找出tt表中的所有id作为过滤条件 目的:id不为0时,过滤id 解决:用case when来代替if els ...

  2. SQL 2014新特性- Delayed durability

    ACID 是数据库的基本属性.其中的D是指"持久性":只要事务已经提交,对应的数据修改就会被保存下来,即使出现断电等情况,当系统重启后之前已经提交的数据依然能够反映到数据库中. 那 ...

  3. consumer group

    Kafka消费组(consumer group)一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka社区邮件组已经在讨论是否应该正式使 ...

  4. Qt学习笔记 QMessageBox

    Qt的几种MessageBox 1.Infomation类型 QMessageBox::information(this,tr("hello"),tr("title&qu ...

  5. 特殊约束From To

    说实话这个不太懂,没用过也没有遇到相应的情况(或者说我不知道).大家可以更多的去参考特定约束FROM TO和MicroZed开发板笔记,第72部分:多周期约束等内容. 本文待修正 系列目录      ...

  6. HoloLens开发手记 - Unity之Tracking loss

    当HoloLens设备不能识别到自己在世界中的位置时,应用就会发生tracking loss.默认情况下,Unity会暂停Update更新循环并显示一张闪屏图片给用户.当设备重新能追踪到位置时,闪屏图 ...

  7. versionCompare 版本号比较工具

    简介 需求非常简单,需要比较软件或app的版本号,判断大小,形如 0.10.2形式的版本号字符串.实现逻辑是按照点(.)分割字符串,然后逐级比较版本大小.不存在的按0处理,空字符串小于非空字符串. 测 ...

  8. HTML问题集锦

    [1]HTML5怎么设置滚动字幕 <marquee direction=up behavior=scroll loop=3 scrollamount=1 scrolldelay=10 align ...

  9. C#中快速释放内存,任务管理器可查证

    先close() 再dispose() 之后=null 最后GC.Collect() 如: ms.Close();//关闭流,并释放与之相关的资源 ms.Dispose();//如果是流的话,默认只会 ...

  10. 使用Git时一些问题的处理

    更新日志: 2016.06.04 晚 添加 git push --force (用于删除高版本的commit) 2015.11.29 晚 添加冲突处理工具Meld的教程 添加在GitHub上Rever ...