基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PMF
Suppose that independent trials, each having a probability $p$, $0 < p < 1$, of being a success, are performed until a success occurs. If we let $X$ equal the number of failures required, then the geometric distribution mass function is $$f(x; p) =\Pr(X=x) = (1-p)^{x}p$$ for $x=0, 1, 2, \cdots$.
Proof:
$$ \begin{align*} \sum_{x=0}^{\infty}f(x; p) &= \sum_{x=0}^{\infty}(1-p)^{x}p\\ &= p\sum_{x=0}^{\infty}(1-p)^{x}\\ & = p\cdot {1\over 1-(1-p)}\\ & = 1 \end{align*} $$
Mean
The expected value is $$\mu = E[X] = {1-p\over p}$$
Proof:
Firstly, we know that $$\sum_{x=0}^{\infty}p^x = {1\over 1-p}$$ where $0 < p < 1$. Thus $$ \begin{align*} {d\over dp}\sum_{x=0}^{\infty}p^x &= \sum_{x=1}^{\infty}xp^{x-1}\\ &= {1\over(1-p)^2} \end{align*} $$ The expected value is $$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}x(1-p)^{x}p\\ &=p(1-p)\sum_{x=1}^{\infty}x(1-p)^{x-1}\\ &= p(1-p){1\over(1-(1-p))^2}\\ &= {1-p\over p} \end{align*} $$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {1-p\over p^2}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &=\sum_{x=0}^{\infty}x^2(1-p)^{x}p\\ &= (1-p)\sum_{x=1}^{\infty}x^2(1-p)^{x-1}p \end{align*} $$ Rewrite the right hand summation as $$ \begin{align*} \sum_{x=1}^{\infty} x^2(1-p)^{x-1}p&= \sum_{x=1}^{\infty} (x-1+1)^2(1-p)^{x-1}p\\ &= \sum_{x=1}^{\infty} (x-1)^2(1-p)^{x-1}p + \sum_{x=1}^{\infty} 2(x-1)(1-p)^{x-1}p + \sum_{x=1}^{\infty} (1-p)^{x-1}p\\ &= E\left[X^2\right] + 2E[X] + 1\\ &= E\left[X^2\right] + {2-p\over p} \end{align*} $$ Thus $$E\left[X^2\right] = (1-p)E\left[X^2\right] + {(1-p)(2-p) \over p}$$ That is $$E\left[X^2\right]= {(1-p)(2-p)\over p^2}$$ So the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {(1-p)(2-p)\over p^2} - {(1-p)^2\over p^2}\\ &= {1-p\over p^2} \end{align*} $$
Examples
1. Let $X$ be geometrically distributed with probability parameter $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
The geometric distribution mass function is $$f(x; p) = (1-p)^{x}p,\ x=0, 1, 2, \cdots$$ The expected value is $$\mu = {1-p\over p} = 1$$ The standard deviation is $$\sigma = \sqrt{1-p\over p^2} = 1.414214$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$P\left(|X-1| \geq 2.828428\right) = P(X\geq 4) = 0.0625$$ R code:
1 - sum(dgeom(c(0:3), 1/2))
# [1] 0.0625
Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$
2. A die is thrown until one gets a 6. Let $V$ be the number of throws used. What is the expected value of $V$? What is the variance of $V$?
Solution:
The PMF of geometric distribution is $$f(x; p) = (1-p)^xp,\ = 0, 1, 2, \cdots$$ where $p = {1\over 6}$. Let $X = V-1$, so the expected value of $V$ is $$ \begin{align*} E[V] &= E[X+1]\\ &= E[X] + 1\\ &= {1-p\over p} + 1\\ &= {1-{1\over6} \over {1\over6}} + 1\\ &= 6 \end{align*} $$ The variance of $V$ is $$ \begin{align*} \mbox{Var}(V) &= \mbox{Var}(X+1)\\ &= \mbox{Var}(X)\\ &= {1-p\over p^2}\\ &= {1-{1\over 6} \over \left({1\over6}\right)^2}\\ &= 30 \end{align*} $$ Note that this is another form of the geometric distribution which is so-called the shifted geometric distribution (i.e. $X$ equals to the number of trials required). By the above process we can see that the expected value of the shifted geometric distribution is $$\mu = {1\over p}$$ and the variance of the shifted geometric distribution is $$\sigma^2 = {1-p\over p^2}$$
3. Assume $W$ is geometrically distributed with probability parameter $p$. What is $P(W < n)$?
Solution:
$$ \begin{align*} P(W < n) &= 1 - P(W \geq n)\\ &= 1-(1-p)^n \end{align*} $$
4. In order to test whether a given die is fair, it is thrown until a 6 appears, and the number $n$ of throws is counted. How great should $n$ be before we can reject the null hypothesis $$H_0: \mbox{the die is fair}$$ against the alternative hypothesis $$H_1: \mbox{the probability of having a 6 is less than 1/6}$$ at significance level $5\%$?
Solution:
The probability of having to use at least $n$ throws given $H_0$ (i.e. the significance probability) is $$P = \left(1 - {1\over 6}\right) ^n$$ We will reject $H_0$ if $P < 0.05$. R code:
n = 1
while (n > 0){
+ p = (5/6) ^ n
+ if (p < 0.05) break
+ n = n + 1
+ }
n
# [1] 17
That is, we have to reject $H_0$ if $n$ is at least 17.
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 10. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- webapp:移动端高清、多屏适配方案(zz)
来源: http://sentsin.com/web/1212.html 移动端高清.多屏适配方案 背景 开发移动端H5页面 面对不同分辨率的手机 面对不同屏幕尺寸的手机 视觉稿 在前端开发之前,视觉 ...
- 【转】CSS Sprites教程大全(使用方法、工具介绍)
什么是CSS Sprite CSS Sprite 又叫CSS精灵,是目前大型网站中经常运用的图片处理方式.它的原理很简单,将网站上零散的小图片(或图标)整合在一张大图上,再用CSS中“backgrou ...
- 大数据下多流形聚类分析之谱聚类SC
大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如 ...
- es6+移动轮播插件
前言:之前赶项目,都是直接用框架,对于touch事件是模拟两可,趁着有心情,用es6写一个原生移动轮播插件. 用了es6的新特性,确实挺爽的,说到es6,就不得不说到babel,博主已经码好了,直接用 ...
- 安装包制作工具 SetupFactory使用1 详解
2014-11-19 Setup Factory 是一个强大的安装程序制作工具.提供了安装制作向导界面,即使你对安装制作不了解,也可以生成专业性质的安装程序.可建立快捷方式,也可直接在 Windows ...
- 基于.NET Socket API 通信的综合应用
闲谈一下,最近和客户进行对接Scoket 本地的程序作为请求方以及接受方,对接Scoket 的难度实在比较大,因为涉及到响应方返回的报文的不一致性,对于返回的报文的格式我需要做反序列化的难度增大了不少 ...
- SQL基础之数据库快照
1.认识快照 如名字一样,数据库快照就可以理解为数据库某一时刻的照片,它记录了此时数据库的数据信息.如果要认识快照的本质,那就要了解快照的工作原理.当我们执行t-sql创建快照后,此时就会创建一个或多 ...
- 网页中三角切边还半透明,现在的设计师越来越牛,css也要跟上啊
需求 今天在群里看到一个需求,啊这种三角形缺角怎么做啊,还带半透明阴影的. 分析 要实现这个,可以用css做三角,网上找一下代码,像这样. 由于以前没有试过border能不能带透明,所以需要试验一下. ...
- java并发:线程同步机制之ThreadLocal
1.简述ThreadLocal ThreadLocal实例通常作为静态的私有的(private static)字段出现在一个类中,这个类用来关联一个线程.ThreadLocal是一个线程级别的局部变量 ...
- 再次认识 vertical-align
css中的基础知识,上次在刷 segmentfault 遇见了一个相关的问题有再次看过 vertical-align 的描述.今天自己也遇见一个类似的问题,再次深入学习一下. vertical-ali ...