PDF version

PMF

Suppose that independent trials, each having a probability $p$, $0 < p < 1$, of being a success, are performed until a success occurs. If we let $X$ equal the number of failures required, then the geometric distribution mass function is $$f(x; p) =\Pr(X=x) = (1-p)^{x}p$$ for $x=0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; p) &= \sum_{x=0}^{\infty}(1-p)^{x}p\\ &= p\sum_{x=0}^{\infty}(1-p)^{x}\\ & = p\cdot {1\over 1-(1-p)}\\ & = 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = {1-p\over p}$$

Proof:

Firstly, we know that $$\sum_{x=0}^{\infty}p^x = {1\over 1-p}$$ where $0 < p < 1$. Thus $$ \begin{align*} {d\over dp}\sum_{x=0}^{\infty}p^x &= \sum_{x=1}^{\infty}xp^{x-1}\\ &= {1\over(1-p)^2} \end{align*} $$ The expected value is $$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}x(1-p)^{x}p\\ &=p(1-p)\sum_{x=1}^{\infty}x(1-p)^{x-1}\\ &= p(1-p){1\over(1-(1-p))^2}\\ &= {1-p\over p} \end{align*} $$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {1-p\over p^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &=\sum_{x=0}^{\infty}x^2(1-p)^{x}p\\ &= (1-p)\sum_{x=1}^{\infty}x^2(1-p)^{x-1}p \end{align*} $$ Rewrite the right hand summation as $$ \begin{align*} \sum_{x=1}^{\infty} x^2(1-p)^{x-1}p&= \sum_{x=1}^{\infty} (x-1+1)^2(1-p)^{x-1}p\\ &= \sum_{x=1}^{\infty} (x-1)^2(1-p)^{x-1}p + \sum_{x=1}^{\infty} 2(x-1)(1-p)^{x-1}p + \sum_{x=1}^{\infty} (1-p)^{x-1}p\\ &= E\left[X^2\right] + 2E[X] + 1\\ &= E\left[X^2\right] + {2-p\over p} \end{align*} $$ Thus $$E\left[X^2\right] = (1-p)E\left[X^2\right] + {(1-p)(2-p) \over p}$$ That is $$E\left[X^2\right]= {(1-p)(2-p)\over p^2}$$ So the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {(1-p)(2-p)\over p^2} - {(1-p)^2\over p^2}\\ &= {1-p\over p^2} \end{align*} $$

Examples

1. Let $X$ be geometrically distributed with probability parameter $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The geometric distribution mass function is $$f(x; p) = (1-p)^{x}p,\ x=0, 1, 2, \cdots$$ The expected value is $$\mu = {1-p\over p} = 1$$ The standard deviation is $$\sigma = \sqrt{1-p\over p^2} = 1.414214$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$P\left(|X-1| \geq 2.828428\right) = P(X\geq 4) = 0.0625$$ R code:

1 - sum(dgeom(c(0:3), 1/2))
# [1] 0.0625

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$

2. A die is thrown until one gets a 6. Let $V$ be the number of throws used. What is the expected value of $V$? What is the variance of $V$?

Solution:

The PMF of geometric distribution is $$f(x; p) = (1-p)^xp,\ = 0, 1, 2, \cdots$$ where $p = {1\over 6}$. Let $X = V-1$, so the expected value of $V$ is $$ \begin{align*} E[V] &= E[X+1]\\ &= E[X] + 1\\ &= {1-p\over p} + 1\\ &= {1-{1\over6} \over {1\over6}} + 1\\ &= 6 \end{align*} $$ The variance of $V$ is $$ \begin{align*} \mbox{Var}(V) &= \mbox{Var}(X+1)\\ &= \mbox{Var}(X)\\ &= {1-p\over p^2}\\ &= {1-{1\over 6} \over \left({1\over6}\right)^2}\\ &= 30 \end{align*} $$ Note that this is another form of the geometric distribution which is so-called the shifted geometric distribution (i.e. $X$ equals to the number of trials required). By the above process we can see that the expected value of the shifted geometric distribution is $$\mu = {1\over p}$$ and the variance of the shifted geometric distribution is $$\sigma^2 = {1-p\over p^2}$$

3. Assume $W$ is geometrically distributed with probability parameter $p$. What is $P(W < n)$?

Solution:

$$ \begin{align*} P(W < n) &= 1 - P(W \geq n)\\ &= 1-(1-p)^n \end{align*} $$

4. In order to test whether a given die is fair, it is thrown until a 6 appears, and the number $n$ of throws is counted. How great should $n$ be before we can reject the null hypothesis $$H_0: \mbox{the die is fair}$$ against the alternative hypothesis $$H_1: \mbox{the probability of having a 6 is less than 1/6}$$ at significance level $5\%$?  

Solution:

The probability of having to use at least $n$ throws given $H_0$ (i.e. the significance probability) is $$P = \left(1 - {1\over 6}\right) ^n$$ We will reject $H_0$ if $P < 0.05$. R code:

n = 1
while (n > 0){
+ p = (5/6) ^ n
+ if (p < 0.05) break
+ n = n + 1
+ }
n
# [1] 17

That is, we have to reject $H_0$ if $n$ is at least 17.

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 10. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  4. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  5. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. APP架子迁移指南(二)

    接上一篇,这一篇开始用android来解释MVP概念.八股式的架子结构和命名规范.我在准备这篇文章的时候还看到不少在MVP基础上衍生的架子思路,底子是MVP没错,但命名有区别.复杂度变了.架子也用到了 ...

  2. Scala集合操作

    大数据技术是数据的集合以及对数据集合的操作技术的统称,具体来说: 1.数据集合:会涉及数据的搜集.存储等,搜集会有很多技术,存储技术现在比较经典方案是使用Hadoop,不过也很多方案采用Kafka.  ...

  3. 同态加密-Homomorphic encryption

    同态加密(Homomorphic encryption)是一种加密形式,它允许人们对密文进行特定的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样.换言之,这项技术令人 ...

  4. java中的枚举类型

    枚举类型是那些字段由一组固定常量组成的类型.常见的例子有:东南西北四个方向,星期几等. 所有枚举类型都隐式继承java.lang.Enum类型,因为java不支持多重继承,所以枚举不能继承其他任何类. ...

  5. android开发------Activity生命周期

    这几天工作比较忙,基本没有什么时间更新播客了. 趁着今晚有点时间,我们来简单说一下什么是Activity生命周期和它们各阶段的特征 什么是生命周期 在还没有接触android开发的时候,听到有人说Ac ...

  6. jQuery能做些什么

    来源于: Learning jQuery, 4th Edition What jQuery does: 1. Access elements in a document; $('div.content ...

  7. 【Tyvj 1060】【NOIP 2005】等价表达式

    设a为一个质数,模数为另一个质数,然后暴力算多项式的答案,如果答案相等就认为两个多项式相等. 这种hash有出错概率的题为什么还是要用hash呢?因为出错的概率实在太小了,a和模数的值取得好出题人根本 ...

  8. Entity Framework Code First (四)Fluent API - 配置属性/类型

    上篇博文说过当我们定义的类不能遵循约定(Conventions)的时候,Code First 提供了两种方式来配置你的类:DataAnnotations 和 Fluent API, 本文将关注 Flu ...

  9. 哈希 poj 3274

    n个牛 二进制最多k位 给你n个数 求max(j-i)&&对应二进制位的和相同 7    1  1  1  倒的 6    0  1  1 7    1  1  1 2    0  1 ...

  10. 使用kuernetes提供高可用的kibana服务

    在kubernetes集群中部署kibana步骤如下: 1:kibana安装文件(目前最新版本4.5.1): 2:编写Dockerfile及执行点脚本文件run.sh,制作Kibana镜像: 3:推送 ...