基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PMF
Suppose that independent trials, each having a probability $p$, $0 < p < 1$, of being a success, are performed until a success occurs. If we let $X$ equal the number of failures required, then the geometric distribution mass function is $$f(x; p) =\Pr(X=x) = (1-p)^{x}p$$ for $x=0, 1, 2, \cdots$.
Proof:
$$ \begin{align*} \sum_{x=0}^{\infty}f(x; p) &= \sum_{x=0}^{\infty}(1-p)^{x}p\\ &= p\sum_{x=0}^{\infty}(1-p)^{x}\\ & = p\cdot {1\over 1-(1-p)}\\ & = 1 \end{align*} $$
Mean
The expected value is $$\mu = E[X] = {1-p\over p}$$
Proof:
Firstly, we know that $$\sum_{x=0}^{\infty}p^x = {1\over 1-p}$$ where $0 < p < 1$. Thus $$ \begin{align*} {d\over dp}\sum_{x=0}^{\infty}p^x &= \sum_{x=1}^{\infty}xp^{x-1}\\ &= {1\over(1-p)^2} \end{align*} $$ The expected value is $$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}x(1-p)^{x}p\\ &=p(1-p)\sum_{x=1}^{\infty}x(1-p)^{x-1}\\ &= p(1-p){1\over(1-(1-p))^2}\\ &= {1-p\over p} \end{align*} $$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {1-p\over p^2}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &=\sum_{x=0}^{\infty}x^2(1-p)^{x}p\\ &= (1-p)\sum_{x=1}^{\infty}x^2(1-p)^{x-1}p \end{align*} $$ Rewrite the right hand summation as $$ \begin{align*} \sum_{x=1}^{\infty} x^2(1-p)^{x-1}p&= \sum_{x=1}^{\infty} (x-1+1)^2(1-p)^{x-1}p\\ &= \sum_{x=1}^{\infty} (x-1)^2(1-p)^{x-1}p + \sum_{x=1}^{\infty} 2(x-1)(1-p)^{x-1}p + \sum_{x=1}^{\infty} (1-p)^{x-1}p\\ &= E\left[X^2\right] + 2E[X] + 1\\ &= E\left[X^2\right] + {2-p\over p} \end{align*} $$ Thus $$E\left[X^2\right] = (1-p)E\left[X^2\right] + {(1-p)(2-p) \over p}$$ That is $$E\left[X^2\right]= {(1-p)(2-p)\over p^2}$$ So the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {(1-p)(2-p)\over p^2} - {(1-p)^2\over p^2}\\ &= {1-p\over p^2} \end{align*} $$
Examples
1. Let $X$ be geometrically distributed with probability parameter $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
The geometric distribution mass function is $$f(x; p) = (1-p)^{x}p,\ x=0, 1, 2, \cdots$$ The expected value is $$\mu = {1-p\over p} = 1$$ The standard deviation is $$\sigma = \sqrt{1-p\over p^2} = 1.414214$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$P\left(|X-1| \geq 2.828428\right) = P(X\geq 4) = 0.0625$$ R code:
1 - sum(dgeom(c(0:3), 1/2))
# [1] 0.0625
Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$
2. A die is thrown until one gets a 6. Let $V$ be the number of throws used. What is the expected value of $V$? What is the variance of $V$?
Solution:
The PMF of geometric distribution is $$f(x; p) = (1-p)^xp,\ = 0, 1, 2, \cdots$$ where $p = {1\over 6}$. Let $X = V-1$, so the expected value of $V$ is $$ \begin{align*} E[V] &= E[X+1]\\ &= E[X] + 1\\ &= {1-p\over p} + 1\\ &= {1-{1\over6} \over {1\over6}} + 1\\ &= 6 \end{align*} $$ The variance of $V$ is $$ \begin{align*} \mbox{Var}(V) &= \mbox{Var}(X+1)\\ &= \mbox{Var}(X)\\ &= {1-p\over p^2}\\ &= {1-{1\over 6} \over \left({1\over6}\right)^2}\\ &= 30 \end{align*} $$ Note that this is another form of the geometric distribution which is so-called the shifted geometric distribution (i.e. $X$ equals to the number of trials required). By the above process we can see that the expected value of the shifted geometric distribution is $$\mu = {1\over p}$$ and the variance of the shifted geometric distribution is $$\sigma^2 = {1-p\over p^2}$$
3. Assume $W$ is geometrically distributed with probability parameter $p$. What is $P(W < n)$?
Solution:
$$ \begin{align*} P(W < n) &= 1 - P(W \geq n)\\ &= 1-(1-p)^n \end{align*} $$
4. In order to test whether a given die is fair, it is thrown until a 6 appears, and the number $n$ of throws is counted. How great should $n$ be before we can reject the null hypothesis $$H_0: \mbox{the die is fair}$$ against the alternative hypothesis $$H_1: \mbox{the probability of having a 6 is less than 1/6}$$ at significance level $5\%$?
Solution:
The probability of having to use at least $n$ throws given $H_0$ (i.e. the significance probability) is $$P = \left(1 - {1\over 6}\right) ^n$$ We will reject $H_0$ if $P < 0.05$. R code:
n = 1
while (n > 0){
+ p = (5/6) ^ n
+ if (p < 0.05) break
+ n = n + 1
+ }
n
# [1] 17
That is, we have to reject $H_0$ if $n$ is at least 17.
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 10. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- APP架子迁移指南(二)
接上一篇,这一篇开始用android来解释MVP概念.八股式的架子结构和命名规范.我在准备这篇文章的时候还看到不少在MVP基础上衍生的架子思路,底子是MVP没错,但命名有区别.复杂度变了.架子也用到了 ...
- Scala集合操作
大数据技术是数据的集合以及对数据集合的操作技术的统称,具体来说: 1.数据集合:会涉及数据的搜集.存储等,搜集会有很多技术,存储技术现在比较经典方案是使用Hadoop,不过也很多方案采用Kafka. ...
- 同态加密-Homomorphic encryption
同态加密(Homomorphic encryption)是一种加密形式,它允许人们对密文进行特定的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样.换言之,这项技术令人 ...
- java中的枚举类型
枚举类型是那些字段由一组固定常量组成的类型.常见的例子有:东南西北四个方向,星期几等. 所有枚举类型都隐式继承java.lang.Enum类型,因为java不支持多重继承,所以枚举不能继承其他任何类. ...
- android开发------Activity生命周期
这几天工作比较忙,基本没有什么时间更新播客了. 趁着今晚有点时间,我们来简单说一下什么是Activity生命周期和它们各阶段的特征 什么是生命周期 在还没有接触android开发的时候,听到有人说Ac ...
- jQuery能做些什么
来源于: Learning jQuery, 4th Edition What jQuery does: 1. Access elements in a document; $('div.content ...
- 【Tyvj 1060】【NOIP 2005】等价表达式
设a为一个质数,模数为另一个质数,然后暴力算多项式的答案,如果答案相等就认为两个多项式相等. 这种hash有出错概率的题为什么还是要用hash呢?因为出错的概率实在太小了,a和模数的值取得好出题人根本 ...
- Entity Framework Code First (四)Fluent API - 配置属性/类型
上篇博文说过当我们定义的类不能遵循约定(Conventions)的时候,Code First 提供了两种方式来配置你的类:DataAnnotations 和 Fluent API, 本文将关注 Flu ...
- 哈希 poj 3274
n个牛 二进制最多k位 给你n个数 求max(j-i)&&对应二进制位的和相同 7 1 1 1 倒的 6 0 1 1 7 1 1 1 2 0 1 ...
- 使用kuernetes提供高可用的kibana服务
在kubernetes集群中部署kibana步骤如下: 1:kibana安装文件(目前最新版本4.5.1): 2:编写Dockerfile及执行点脚本文件run.sh,制作Kibana镜像: 3:推送 ...