DATABASE SYSTEM CONCEPTS, SIXTH EDITION
11.1 Basic Concepts
An index for a file in a database system works in much the same way as the index
in this textbook. If we want to learn about a particular topic (specified by a word
or a phrase) in this textbook, we can search for the topic in the index at the back
of the book, find the pages where it occurs, and then read the pages to find the
information for which we are looking. The words in the index are in sorted order,
making it easy to find the word we want. Moreover, the index is much smaller
than the book, further reducing the effort needed.
Database-system indices play the same role as book indices in libraries. For
example, to retrieve a student record given an
ID
, the database system would look
up an index to find on which disk block the corresponding record resides, and
then fetch the disk block, to get the appropriate student record.
Keeping a sorted list of students’
ID
would not work well on very large
databases with thousands of students, since the index would itself be very big;
further, even though keeping the index sorted reduces the search time, finding a
student can still be rather time-consuming. Instead, more sophisticated indexing
techniques may be used. We shall discuss several of these techniques in this
chapter.
There are two basic kinds of indices:


Ordered indices. Based on a sorted ordering of the values.


Hash indices. Based on a uniform distribution of values across a range of
buckets. The bucket to which a value is assigned is determined by a function,
called a hash function.

We shall consider several techniques for both ordered indexing and hashing.
No one technique is the best. Rather, each technique is best suited to particular
database applications. Each technique must be evaluated on the basis of these
factors:


Access types: The types of access that are supported efficiently. Access types
can include finding records with a specified attribute value and finding
records whose attribute values fall in a specified range.

Access time: The time it takes to find a particular data item, or set of items,
using the technique in question.

Insertion time: The time it takes to insert a new data item. This value includes
the time it takes to find the correct place to insert the new data item, as well
as the time it takes to update the index structure.

Deletion time: The time it takes to delete a data item. This value includes
the time it takes to find the item to be deleted, as well as the time it takes to
update the index structure.

Space overhead: The additional space occupied by an index structure. Pro-
vided that the amount of additional space is moderate, it is usually worth-
while to sacrifice the space to achieve improved performance.
We often want to have more than one index for a file. For example, we may
wish to search for a book by author, by subject, or by title.
An attribute or set of attributes used to look up records in a file is called a
search key. Note that this definition of key differs from that used in primary key,
candidate key, and superkey. This duplicate meaning for key is (unfortunately) well
established in practice. Using our notion of a search key, we see that if there are
several indices on a file, there are several search keys.

Indexing and Hashing的更多相关文章

  1. 局部敏感哈希-Locality Sensitive Hashing

    局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分 ...

  2. 局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍

    局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似近期邻高速查找技术--局部敏感哈希(Locality-Sensitive ...

  3. 局部敏感哈希(Locality-Sensitive Hashing, LSH)

    本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理.LSH哈希函数集.以及LSH的一些参 ...

  4. Post Tuned Hashing,PTH

    [ACM 2018] Post Tuned Hashing_A New Approach to Indexing High-dimensional Data [paper] [code] Zhendo ...

  5. 哈希学习(2)—— Hashing图像检索资源

    CVPR14 图像检索papers——图像检索 1.  Triangulation embedding and democratic aggregation for imagesearch (Oral ...

  6. 局部敏感哈希 Kernelized Locality-Sensitive Hashing Page

    Kernelized Locality-Sensitive Hashing Page   Brian Kulis (1) and Kristen Grauman (2)(1) UC Berkeley ...

  7. 局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍(转)

    局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive ...

  8. 单细胞分析实录(1): 认识Cell Hashing

    这是一个新系列 差不多是一年以前,我定导后没多久,接手了读研后的第一个课题.合作方是医院,和我对接的是一名博一的医学生,最开始两边的老师很排斥常规的单细胞文章思路,即各大类细胞分群.注释.描述,所以起 ...

  9. [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)

    局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...

随机推荐

  1. 5.19[bzoj树网的核]

    围观了final,SJTU还是飞了,泽民同志劲啊! 膜拜归膜拜...回来开题 bzoj1999树网的核 最近就喜欢给自己找切不动的题...QAQ ok.....昨天在家里做了一个下午+晚上 又困&am ...

  2. DOM基础2

    插入元素 <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF- ...

  3. The StringFormat property

    As we saw in the previous chapters, the way to manipulate the output of a binding before is shown is ...

  4. React.js 常用技术要点

    最近在公司的一个移动端WEB产品中使用了React这个框架(并不是React-Native),记录一下在开发过程中遇到的各种问题以及对应的解决方法,希望能对读者有所帮助. React原则 React不 ...

  5. hdu2094 set初体验

    有一群人,打乒乓球比赛,两两捉对撕杀,每两个人之间最多打一场比赛.球赛的规则如下:如果A打败了B,B又打败了C,而A与C之间没有进行过比赛,那么就认定,A一定能打败C.如果A打败了B,B又打败了C,而 ...

  6. ubifs扩展性分析

    文件系统的可扩展性,主要考察flash规模变大时对文件系统性能的影响,主要考察指标有: mount时间 访问时间 检查修复时间 最大文件大小 最大文件系统大小 最大文件个数   mount时间     ...

  7. 热烈庆祝华清远见成功自主研发Farsight TV 智能机顶盒

    近日,华清远见研发中心再传喜讯:Farsight TV 智能机顶盒研发成功并投入教学!这是华清远见研发中心继开源平板电脑.智能医疗终端.智能家居终端后独立成功研发的又一智能硬件!至此,开创了华清远见自 ...

  8. 最好的文本框样式 最漂亮的文本框样式 textbox css样式

    输入框景背景透明: <input style="background:transparent;border:1px solid #ffffff"> 鼠标划过输入框,输入 ...

  9. js文字无缝滚动

    <div id=demo style="overflow:hidden; width:128px; height:300px;"> <div id=demo1&g ...

  10. IDictionary<TKey, TValue> vs. IDictionary

    Enumerating directly over an IDictionary<TKey,TValue>returns a sequence of  KeyValuePair struc ...