题意:给你一个n*n的全0矩阵,每次有两个操作: 
C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反 
Q x y:求出(x,y)位置的值

  树状数组标准是求单点更新区间求和,但是我们处理一下就可以完美解决此问题。区间更新可以使用区间求和的方法,在更新的(x2,y2)记录+1,在更新的(x1-1,y1-1)-1(向前更新到最前方)。单点求和就只需要与区间更新相反,向后求一个区间和。这样做的理由是:如果求和的点在某次更新范围内,我们+1但是不执行-1,否者要么都不执行,要么都执行就不变。 
  但是这儿我们是二维树状数组,我们需要使用容斥原理:(x2,y2)+1,(x1-1,y2)-1,(x2,y1-1)-1,(x1-1,y1-1)+1

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const double Pi=acos(-1.0);
const int Mod=1e9+;
const int Max=;
int bit[Max][Max],n;
void Init(int n)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
bit[i][j]=;
return;
}
int lowbit(int x)
{
return x&(-x);
}
void Add(int x,int y,int z)
{
for(int i=x;i>;i-=lowbit(i))
{
for(int j=y;j>;j-=lowbit(j))
{
bit[i][j]=(bit[i][j]+z+&);
}
}
return;
}
int Sum(int x,int y)
{
int sum=;
for(int i=x;i<=n;i+=lowbit(i))
{
for(int j=y;j<=n;j+=lowbit(j))
{
sum+=bit[i][j];
}
}
return sum & ;
}
int main()
{
int t,q,xx1,xx2,yy1,yy2;
char str[];
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&q);
Init(n);
while(q--)
{
scanf("%s",str);
if(str[]=='C')
{
scanf("%d %d %d %d",&xx1,&yy1,&xx2,&yy2);
Add(xx2,yy2,);//区间更新的容斥原理
Add(xx1-,yy2,-);
Add(xx2,yy1-,-);
Add(xx1-,yy1-,);
}
else
{
scanf("%d %d",&xx1,&yy1);
printf("%d\n",Sum(xx1,yy1));
}
}
if(t)
printf("\n");
}
return ;
}

POJ 2155 Matrix(二维树状数组+区间更新单点求和)的更多相关文章

  1. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  2. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  3. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  4. 牛客网 暑期ACM多校训练营(第二场)J.farm-STL(vector)+二维树状数组区间更新、单点查询 or 大暴力?

    开心.jpg J.farm 先解释一下题意,题意就是一个n*m的矩形区域,每个点代表一个植物,然后不同的植物对应不同的适合的肥料k,如果植物被撒上不适合的肥料就会死掉.然后题目将每个点适合的肥料种类( ...

  5. POJ2155 Matrix(二维树状数组||区间修改单点查询)

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  6. poj2155二维树状数组区间更新

    垃圾poj又交不上题了,也不知道自己写的对不对 /* 给定一个矩阵,初始化为0:两种操作 第一种把一块子矩阵里的值翻转:0->1,1->0 第二种询问某个单元的值 直接累计单元格被覆盖的次 ...

  7. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...

  8. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  9. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

随机推荐

  1. codeforces 582A. GCD Table 解题报告

    题目链接:http://codeforces.com/problemset/problem/582/A 网上很多题解,就不说了,直接贴代码= = 官方题解: http://codeforces.com ...

  2. Android studio 自定义打包APK名称

    Android Studio打包应用默认生成的apk名称是:app-release.apk .如果我们要让生成的apk名跟我们版本包名有联系的话,那我们就要自定义生成的apk名了,要怎么做呢. 我们只 ...

  3. centos 6.5 配置LDAP服务器+客户端!

    各种度娘!各种歌哥!网上教程参差不齐,历时1天,终于完成,不敢独享,遂,总结分享之,有问题可以留言,知无不言...开始吧 Note: 本次配置的服务器环境是<redhat enterprise ...

  4. bootstrap添加时间控件

    $('#startTime').daterangepicker({ singleDatePicker: true,format:"YYYY-MM-DD HH:mm:ss",time ...

  5. 【XLL API 函数】xlGetName

    以字符串格式返回 DLL 文件的长文件名. 原型 Excel12(xlGetName, LPXLOPER12 pxRes, 0); 参数 这个函数没有参数 属性值和返回值 返回文件名和路径 实例 \S ...

  6. 模板类重载<<运算符

    写了一个Matrix模板类,需要重载<<, 1.需要友元函数 2.需要此函数的实现在.h中(本人试验出来的,放在.cpp中编译不通过) template <typename T> ...

  7. ASP.net绑定文本框Enter事件到按钮 ASP.NET执行后台执行JS方法

    txtAccountBarcode.Attributes.Add("onkeydown", "if(event.which || event.keyCode){if (( ...

  8. [Android Pro] Service (startservice , bindservice , unbindservice, stopService)

    1: startService -------stopService (this will call onDestroy) 2: bindService -------unbindService    ...

  9. 狼抓兔子(bzoj 1010)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  10. 模拟赛1102d1

    炮(cannon)[题目描述]众所周知,双炮叠叠将是中国象棋中很厉害的一招必杀技.炮吃子时必须隔一个棋子跳吃,即俗称"炮打隔子". 炮跟炮显然不能在一起打起来,于是rly一天借来了 ...