Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4315    Accepted Submission(s): 1687

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
Source
 

裸的lucas定理,直接调用函数即可。

我暂时不明白为什么是C((n+m),m),以后再研究吧。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; typedef long long ll; ll quick_mod(ll a,ll b,ll m){
ll ans = ;
a %= m;
while(b){
if(b&)
ans = ans * a % m;
b >>= ;
a = a * a % m;
}
return ans;
} ll getC(ll n, ll m,ll mod){
if(m > n)
return ;
if(m > n-m)
m = n-m;
ll a = ,b = ;
while(m){
a = (a*n)%mod;
b = (b*m)%mod;
m--;
n--;
}
return a*quick_mod(b,mod-,mod)%mod;
} ll Lucas(ll n,ll k,ll mod){
if(k == )
return ;
return getC(n%mod,k%mod,mod)*Lucas(n/mod,k/mod,mod)%mod;
} int main(){
int T;
scanf("%d",&T);
while(T--){
ll n,m,mod;
scanf("%lld%lld%lld",&n,&m,&mod);
printf("%lld\n",Lucas(n+m,m,mod));
}
return ;
}

hdu 3037 Saving Beans Lucas定理的更多相关文章

  1. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  2. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  5. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  6. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  7. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

随机推荐

  1. 网页中超链接的简化问题(如何避免超链接的get提交)

    废话不多,直接看例子吧: <a href="###?key=${*** }">跳转</a> 上面这个超链接被点击后,肯定会向某个控制器发送一个get请求,而 ...

  2. uva 489.Hangman Judge 解题报告

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. Android状态栏微技巧,带你真正意义上的沉浸式

    记得之前有朋友在留言里让我写一篇关于沉浸式状态栏的文章,正巧我确实有这个打算,那么本篇就给大家带来一次沉浸式状态栏的微技巧讲解. 其实说到沉浸式状态栏这个名字我也是感到很无奈,真不知道这种叫法是谁先发 ...

  4. 如何用Jquery判断在键盘上敲的哪个按键

    有时候我们需要判断我们在键盘上敲了哪个键,这个需要查询下键盘上的键对应的值是多少,比如Enter键是13. 下面是Jquery代码,别忘了引用Jquery包哈. <script type=&qu ...

  5. yii 多模板

    main.php: //替换所有模板 //加载文件名为first的模板 //       'theme'=>'theme1', 'components'=>array(           ...

  6. Javaweb---Servlet过滤器

    Servlet过滤器从字面上的字意理解为景观一层次的过滤处理才达到使用的要求,而其实Servlet过滤器就是服务器与客户端请求与响应的中间层组件,在实际项目开发中Servlet过滤器主要用于对浏览器的 ...

  7. Cocoapods的使用教程

    前言 对于iOS App的开发,几乎都采用了Cocoapods来管理第三方库,那么对于我们开发人员来说,这是必备技能,必须要掌握如何使用.这篇文章就是介绍如何安装和使用CocoaPods的. 这篇文章 ...

  8. LeetCode : 223. Rectangle Area

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABRQAAAQ0CAYAAAAPPZBqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVlw

  9. loadrunner支持https协议的操作方法-经验总结

    问题:用户portal支持https协议,用loadrunner录制登陆脚本时发现未录制到用户名和密码 录制到的脚本如下: login() { lr_think_time(10); web_url(& ...

  10. tengine-2.1.0 源码安装

    [root@localhost tengine-]# yum update -y [root@localhost tengine-]# yum install gcc gcc-c++ autoconf ...