BZOJ4517: [Sdoi2016]排列计数
Description
Input
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
1 0
1 1
5 2
100 50
10000 5000
Sample Output
1
20
578028887
60695423
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int maxn=1000010;
const int mod=1000000007;
int xp[maxn],inv[maxn],f[maxn];
int C(int n,int m) {return (ll)xp[n]*inv[m]%mod*inv[n-m]%mod;}
void init(int n) {
xp[0]=inv[0]=inv[1]=1;
rep(i,1,n) xp[i]=(ll)xp[i-1]*i%mod;
rep(i,2,n) inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
rep(i,1,n) inv[i]=(ll)inv[i-1]*inv[i]%mod;
f[2]=f[0]=1;
rep(i,3,n) f[i]=(ll)(f[i-1]+f[i-2])*(i-1)%mod;
}
int A[maxn],B[maxn];
int main() {
int n=read(),m=0;
rep(i,1,n) m=max(m,A[i]=read()),B[i]=read();
init(m);
rep(i,1,n) {
if(B[i]>A[i]) puts("0");
else printf("%d\n",(ll)C(A[i],B[i])*f[A[i]-B[i]]%mod);
}
return 0;
}
BZOJ4517: [Sdoi2016]排列计数的更多相关文章
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- bzoj4517[Sdoi2016]排列计数(组合数,错排)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1792 Solved: 1111[Submit][Stat ...
- [BZOJ4517] [Sdoi2016] 排列计数 (数学)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)
传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...
- BZOJ4517——[Sdoi2016]排列计数
求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...
- BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
随机推荐
- Asyncio中的Task管理
#!/usr/bin/env python # -*- coding: utf-8 -*- import asyncio import datetime import time from random ...
- OCJP(1Z0-851) 模拟题分析(五)over
Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...
- Linux 下编译自己的 OpenJDK7 包括JVM和JDK API
1.首先去 这里 http://download.java.net/openjdk/jdk7/ 下载OpenJDK7的源码zip包 2. 简要介绍下OpenJDK7中的目录 hotspot: 放有Op ...
- JVM内存结构、垃圾回收那点事
翻看电脑的文件夹,无意看到了9月份在公司做的一次分享,浏览了一下"婆婆特",发现自己在ppt上的写的引导性问题自己也不能确切的回答出来,哎,知识这东西,平时不常用的没些日子就生疏了 ...
- [unity3d插件]2dtoolkit系列一 创建精灵
从今天开始要做一个2d游戏,由于之前都是做cocos2dx的,然后接触了一段时间的unity3d,都是做3D方面的东西,得知要做2d游戏还是有点开心的,或许因为不想丢失之前的2d游戏的一些思想,然后接 ...
- Arduino101学习笔记(十一)—— 蓝牙BLE
一.BLE技术简介 第四代蓝牙既包括传统的蓝牙,现在标有"蓝牙经典",和新的低功耗蓝牙(Bluetooth LE,或BLE).低数据速率,低功耗优化. 蓝牙LE广播就像一个社区公告 ...
- Linux(centos)如何安装Zend Optimizer Zend Guard Loader
很多php开源系统都是基于Zend Optimizer的,所以我们需要先安装Zend Optimizer.但在php5.3之后Zend Optimizer被Zend Guard Loader 取代了, ...
- Android studio导入eclipse项目且不改变目录结构
Android studio的安装与配置论坛当中已经有很多在此就不在细说了,现在开始说下如何在Android studio当中导入eclipse的项目且不改变其目录结构和配置,让使用eclipse的同 ...
- scrollTo , scrollBy区别
View视图中scrollTo 与scrollBy这两个函数的区别 . 首先 ,我们必须明白在Android View视图是没有边界的,Canvas是没有边界的,只不过我们通过绘制特定的View时对 ...
- XCL-Charts图表库简要教程及常见问题
这个Andriod图表库项目从开始至现在,热情消耗几近殆尽.还好已基本实现我想做的那些东西.趁还剩下点兴趣,把一些点非常简单的归纳一下. 所支持的图表类型: 基类 ...