Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

题解:首先我们要求Σgcd(x,y)=p (p为素数)=> Σgcd(x/p,y/p)=1 那么我们就可以枚举p,求y/p的欧拉函数的前缀和辣,又因为数对是有序的,所以结果×2还要减去n以内质数次,为什么,我也没想清楚。。。一定要想清楚。。。
大概是想清楚了,因为每次统计时(1,1)都被统计了2次所以每次减去1,公n以内的质数次。nice!!
 #include <iostream>
#include <cstdio>
#include <cstring>
#define N 10000000
using namespace std;
int flag[N+],prime[N+];
long long phi[N+],ans;
int n,k;
void calcphi()
{
phi[]=;
for (int i=;i<=n;i++)
{
if (!flag[i])
{
prime[++k]=i;
phi[i]=i-;
}
for (int j=;j<=k&&i*prime[j]<=n;j++)
{
flag[i*prime[j]]=;
if (i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} int main()
{
scanf("%d",&n);
calcphi();
for (int i=;i<=n;i++)
phi[i]+=phi[i-];
for (int i=;i<=k;i++)
ans+=phi[n/prime[i]];
printf("%lld",ans*-k);
return ;
}

【BZOJ2818】Gcd 欧拉筛的更多相关文章

  1. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  2. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  3. BZOJ2818: Gcd 欧拉函数

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  4. 【BZOJ 2818】gcd 欧拉筛

    枚举小于n的质数,然后再枚举小于n/这个质数的Φ的和,乘2再加1即可.乘2是因为xy互换是另一组解,加1是x==y==1时的一组解.至于求和我们只需处理前缀和就可以啦,注意Φ(1)的值不能包含在前缀和 ...

  5. noip复习——线性筛(欧拉筛)

    整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...

  6. 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛

    欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...

  7. [51NOD1181]质数中的质数(质数筛法)(欧拉筛)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...

  8. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

  9. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

随机推荐

  1. Spring.Net学习之简单的知识点(一)

    1.Spring.Net是一个开源的应用程序框架,可以简化开发主要功能(1)实现控制反转(IOC/DI),也就是不要直接new,依赖于接口(2)面向切面编程(AOP),就是向程序中利用委托注册事件简单 ...

  2. MVC4 WEBAPI(一)使用概述

    所谓概述,也就是总结一些WEB API常用的使用用法.MVC APIWEB是一个轻量级的服务接口,完全符合RestFul框架设计,每个URL代表一种资源,使用方便,没有WCF那么庞大,但是麻雀虽小五脏 ...

  3. JAVA和PYTHON同时实现AES的加密解密操作---且生成的BASE62编码一致

    终于有机会生产JAVA的东东了. 有点兴奋. 花了一天搞完.. java(关键key及算法有缩减): package com.security; import javax.crypto.Cipher; ...

  4. 学习SQLAlchemy Core

    有时间了就要慢慢看,死守DJANGO ORM,明显没有SQLAlchemy有优势. 因为SQLAlchemy针对整个PYTHON都是有用的. 找了本书,慢慢撸. <Essential.SQLAl ...

  5. AOP常用术语

    1.连接点(Joinpoint) 程序执行的某个特定位置:如类开始初始化前,类初始化后,类某个方法调用前,调用后,方法跑出异常后.一个类或一段程序代码拥有一些具有边界性质的特定点.这些代码中的特定点就 ...

  6. 无法启动程序 ”*.lib”

    解决办法: 把含有入口函数(main函数)的 工程 如 cpp-test 设置为启动项 具体操作: 选中 cpp-test 工程 右击 —> 设为启动项目

  7. C语言面试

    最全的C语言试题总结 第一部分:基本概念及其它问答题 1.关键字static的作用是什么? 这个简单的问题很少有人能回答完全.在C语言中,关键字static有三个明显的作用: 1). 在函数体,一个被 ...

  8. AndroidStudio里面怎么取消与SVN的关联

    在公司做项目 遇到SVN解除关联的问题 后经过解决: 1.解除文件的关联方法: 1.1. 创建一个reg文件 如下 1.2 在文件中填入如下内容并保存: Windows Registry Editor ...

  9. matlab报错

    这可能说明..压根就没有这个函数

  10. 静态局部变量、静态全局变量、extern全局变量、自动变量 札记

    静态局部变量 静态局部变量. 从称呼上我们可以看出,静态局部变量首先是一个局部变量,因此其只在定义它的函数内有效,冠以静态的头衔后,其生存期就被延长了,不会随着函数的返回而被撤销.我们可以这样来理解: ...