Hierarchical Convolutional Features for Visual Tracking 

ICCV 2015

  摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer 之间提取出来的不同特征进行跟踪。因为各个层次提出来的 feature 具有不同的特征。并且将各个层级的特征用现有的 correlation filter 进行编码物体的外观,我们在每一个层上寻找最佳响应来定位物体。

  

  引言:老套路的讨论了现有的跟踪问题存在的挑战以及现有方法取得的一些进展,并且引出了研究 CNN 各个 layer 的特征对跟踪结果的影响。

  现有的 deep learning 的跟踪方法基本都是依赖于训练分类器的方式来实现物体的跟踪。但是这种做法存在两个技术上挑战:

  1. 大部分的算法都只是用到了最后一层提出的 feature,这一层的特征其实是具有一定的偏差性的;

    对于高层视觉识别问题,这些特征提供了有效的语义信息。但是跟踪并不是识别其semantic classes,而是去定位物体的位置。

    那么,很明显,仅仅用最后一层的特征,并不是最优的选择。

  2. 第二个问题是关于提取训练样本。

       训练一个 robust 的分类器需要大量的两本,但是这个在跟踪问题上,并不是非常的适合。因为在一个物体周围进行采样,很难确定哪个算是正样本,哪个是负样本。

  

  本文通过两种方式来解决这两个技术难题。

  (1)利用神经网络的各个层的特征,联合的来表示所要跟踪的物体;

  (2)在各个层次自适应学习 correlation filter,而不必去进行样本的 sampling。

  

  本文总结的几个贡献点为:

  1. 结合了各个层次的特征,进行物体的特征表示;

  2. 采用线性 correlation filter 的方式在每一层来降低 sampling ambiguity。我们 infer 物体位置是通过一种 multi-level correlation response map in a coarse-to-fine fashion.

  3. 充分的实验。


  为了更好的理解现有方法和传统方法的区别和联系,本文的相关工作写的还是挺不错的。现在我们来分析下这个小节:

  Tracking by Binary Classifiers .

  跟踪问题可以看做是局部窗口内的一个重复的检测问题,即:tracking by detection的思路。这种分类器学习的方式经常是 online的。

  但是,在物体周围采样本的时候,经常会遇到模糊采样的问题,导致轻微的不准确采样就会使得分类器不准确,从而导致逐渐的偏移。已经有许多算法提出以尝试解决上述问题。核心的 idea就是如何合适的更新一个判别分类器来降低 drift。这里作者给出了许多例子,这里就不一一列举了。

  Tracking by Correlation Filters .

  相关滤波最近吸引了很多研究者的眼球,由于其采用了快速傅里叶变换,速度极快。基于 correlation filter 的跟踪方法回归所有输入特征的 circular-shifted versions 到一个目标高斯函数,从而不使用 hard-thresholded samples of target appearance.

  本文也是基于这种方法来做得,不同的地方在于,本文的方法结合了不同层次上的特征,而不是传统手工特征。

  那么,看到这里,其实本文的工作一句话来说就是:组合了深度学习的特征 +  现有的 correlation filter 进行跟踪。其实,学术贡献点并不是很大,居然可以发 ICCV 。。。

  

  Tracking by CNNs .

   视觉表示是跟踪问题中非常重要的问题,传统方法设计了很多非常有效的表示,例如:子空间表示,颜色直方图。最近CNN 的表示已经被广泛的验证了其有效性。

   然后作者列举了几个深度学习的工作,指出其不足之处在于:仅仅用到了最后一层的 feature,这是远远不够的。

  

  可以看出相关工作的写作,是非常具有针对性的。列举前人工作的时候,要根据自己方法的特色来划分类别和指出别人的不足。

  本文的贡献点是:CNNs +  different feature + correlation filter

  所以,作者从这三个角度,分别攻击了前人方法的不足,其实是借助了另外的两个成分来弥补当前谈论的方法的缺陷。这个写作技巧可以借鉴在以后的文章写作中去。

  下面这幅图展示了各个 layer 特征的不同。


  本文所提出的方法流程

    文章的主题部分大致分为几个部分:

  1. 卷积特征的提取;

  2. Correlation Filter 的相关介绍;

  3. Coarse-to-Fine Translation Estimation ;

  4. Model Update

  本文的算法流程如下所示:

  


  实验结果:


  

  总结:

  个人感觉这个文章的学术贡献点,并不是非常的充分,只是简单的组合。不过看来,大家对于如何更好的利用深度学习来做跟踪问题,并没有特别好的办法。只是简单的利用其提出的强有力的特征来表达所跟踪的问题。所用的跟踪算法也是现有的,只是借用了不同 CNN layer 的特征。那么,未来的跟踪算法该如何更好的借助 CNN 这个工具,得到更加有效,智能的跟踪算法呢?

路漫漫其修远兮,吾将上下而求索 。。。

  

论文笔记之: Hierarchical Convolutional Features for Visual Tracking的更多相关文章

  1. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  2. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  3. 论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks

    SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:ht ...

  4. 论文笔记:Learning Attribute-Specific Representations for Visual Tracking

    Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmer ...

  5. 论文笔记之: Recurrent Models of Visual Attention

    Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也 ...

  6. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  7. 论文笔记:Learning Region Features for Object Detection

    中心思想 继Relation Network实现可学习的nms之后,MSRA的大佬们觉得目标检测器依然不够fully learnable,这篇文章类似之前的Deformable ROI Pooling ...

  8. 【论文笔记】CBAM: Convolutional Block Attention Module

    CBAM: Convolutional Block Attention Module 2018-09-14 21:52:42 Paper:http://openaccess.thecvf.com/co ...

  9. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

随机推荐

  1. iOS 键盘

    http://blog.sina.com.cn/s/blog_7018d3820101djut.html 一.键盘风格 UIKit框架支持8种风格键盘. typedef enum { UIKeyboa ...

  2. Html5 Canvas核心技术(图形,动画,游戏开发)--基础知识

    基础知识 canvas 元素可以说是HTML5元素中最强大的一个,他真正的能力是通过canvas的context对象表现出来的.该环境对象可以从canvas元素身上获得. <body> & ...

  3. linux top命令

    top命令参数 -h:help表示显示帮助的意思 -v:version显示版本的意思,和-h的功能一样 -u:user显示指定用户的进程,例如:top -u root -p:pid显示指定进程,例如: ...

  4. 各种效果的tab选项卡

    ;(function($){ $.fn.tabso=function( options ){ var opts=$.extend({},$.fn.tabso.defaults,options ); r ...

  5. Naive Bayes理论与实践

    Naive Bayes: 简单有效的常用分类算法,典型用途:垃圾邮件分类 假设:给定目标值时属性之间相互条件独立 同样,先验概率的贝叶斯估计是 优点: 1. 无监督学习的一种,实现简单,没有迭代,学习 ...

  6. 用OPencv配置vs2010

    第一次作业,图像的识别存储和显示 此次选用的是Microsoft Visual Studio 2010软件,在配置和opencv的时候,要选好版本苟泽造成不兼容,因此我选用的为opencv 2.4.1 ...

  7. linux查看及改变运行级别

    Linux运行级别从0-6,共7个. 0:关机.不能将系统缺省运行级别设置为0,否则无法启动. 1:单用户模式,只允许root用户对系统进行维护. 2:多用户模式,但不能使用NFS(相当于Window ...

  8. C#窗体 WinForm 对话框,流

    一.对话框 ColorDialog:颜色选择控件 private void button1_Click(object sender, EventArgs e) { //显示颜色选择器 colorDia ...

  9. cmake gcc等安装备案

    cmake安装,参照 http://www.cnblogs.com/voyagflyer/p/5323748.html cmake2.8以上 安装后的是/usr/local/bin/cmake -ve ...

  10. 0429 Scrum团队成立与第6-7章读后感

    Scrum团队成立: 团队名称:何首污大战污妖王 团队目标:每个人都尽可能的学到东西,共同进步. 团队口号:因为自信,所以成功! 团队照: 角色分配 产品负责人(梁毅乾): 决定开发内容和优先级排序, ...