Codeforces Round #258 (Div. 2)

C. Predict Outcome of the Game
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

There are n games in a football tournament. Three teams are participating in it. Currently k games had already been played.

You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these k games. Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and that of between second and third team will be d2.

You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there exist a valid tournament satisfying the friend's guess such that no team will win this tournament?

Note that outcome of a match can not be a draw, it has to be either win or loss.

Input

The first line of the input contains a single integer corresponding to number of test cases t (1 ≤ t ≤ 105).

Each of the next t lines will contain four space-separated integers n, k, d1, d2 (1 ≤ n ≤ 1012; 0 ≤ k ≤ n; 0 ≤ d1, d2 ≤ k) — data for the current test case.

Output

For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no" otherwise (without quotes).

Sample test(s)
Input
5
3 0 0 0
3 3 0 0
6 4 1 0
6 3 3 0
3 3 3 2
Output
yes
yes
yes
no
no
Note

Sample 1. There has not been any match up to now (k = 0, d1 = 0, d2 = 0). If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.

Sample 2. You missed all the games (k = 3). As d1 = 0 and d2 = 0, and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".

Sample 3. You missed 4 matches, and d1 = 1, d2 = 0. These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal number of wins (2 wins).

题意:已知ABC 3个队已经打了k场比赛,一共要打n场比赛,已知之前AB的胜场数的差的绝对值、BC的胜场数的差的绝对值,求最后是否有可能三个队胜场相同。(每单场比赛必定会决出胜负,不会平)

题解:水题,就3个队,一共就几种情况,可以枚举判断。

·CF要的就是又快又稳,这种水题就是要怒枚举一发。已知两个绝对值,那么三个队的分数分布有4种情况,按升降来说明大概是“//" "/\" "\/" "\\"四种,定好了大小,然后根据已打场次k调整一下,就能得到4种已知胜场,看看能不能填平。

看代码可以发现我分了两个函数,非常专业。(?

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) ll n,k,d1,d2;
bool gank(const ll &x,const ll &y,const ll &z){
ll a[];
a[]=x;
a[]=y;
a[]=z;
sort(a,a+);
if(a[]+a[]+a[]<k){
ll t=(k-a[]-a[]-a[])/;
a[]+=t,a[]+=t,a[]+=t;
}
if(a[]<){a[]-=a[];a[]-=a[];a[]-=a[];}
if(a[]+a[]+a[]!=k)return ;
ll need=a[]-a[]+a[]-a[];
if(need>n-k)return ;
if((n-k-need)%!=)return ;
return ;
} bool farm(){
if(gank(,d1,d1+d2))return ;
if(gank(,d1,d1-d2))return ;
if(gank(d1,,d2))return ;
if(gank(d1+d2,d2,))return ;
return ;
} int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%I64d%I64d%I64d%I64d",&n,&k,&d1,&d2);
if(farm())puts("yes");
else puts("no");
}
return ;
}

CF451C Predict Outcome of the Game 水题的更多相关文章

  1. Codeforces Round #258 (Div. 2) C. Predict Outcome of the Game 水题

    C. Predict Outcome of the Game 题目连接: http://codeforces.com/contest/451/problem/C Description There a ...

  2. HDOJ 2317. Nasty Hacks 模拟水题

    Nasty Hacks Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  3. ACM :漫漫上学路 -DP -水题

    CSU 1772 漫漫上学路 Time Limit: 1000MS   Memory Limit: 131072KB   64bit IO Format: %lld & %llu Submit ...

  4. ytu 1050:写一个函数,使给定的一个二维数组(3×3)转置,即行列互换(水题)

    1050: 写一个函数,使给定的一个二维数组(3×3)转置,即行列互换 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 154  Solved: 112[ ...

  5. [poj2247] Humble Numbers (DP水题)

    DP 水题 Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The se ...

  6. gdutcode 1195: 相信我这是水题 GDUT中有个风云人物pigofzhou,是冰点奇迹队的主代码手,

    1195: 相信我这是水题 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 821  Solved: 219 Description GDUT中有个风云人 ...

  7. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  8. 第十一届“蓝狐网络杯”湖南省大学生计算机程序设计竞赛 B - 大还是小? 字符串水题

    B - 大还是小? Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Description 输入两个实数,判断第一个数大 ...

  9. ACM水题

    ACM小白...非常费劲儿的学习中,我觉得目前我能做出来的都可以划分在水题的范围中...不断做,不断总结,随时更新 POJ: 1004 Financial Management 求平均值 杭电OJ: ...

随机推荐

  1. 【UOJ#33】【UR#2】树上GCD 有根树点分治 + 容斥原理 + 分块

    #33. [UR #2]树上GCD 有一棵$n$个结点的有根树$T$.结点编号为$1…n$,其中根结点为$1$. 树上每条边的长度为$1$.我们用$d(x,y)$表示结点$x,y$在树上的距离,$LC ...

  2. java的 clone方法

    1.java语言中没有明确提供指针的概念与用法,而实质上每个new语句返回的都是一个指针的引用,只不过在大部分情况下开发人员不需要关心如果取操作这个指针而已. 2.在java中处理基本数据类型时,都是 ...

  3. 【poj1013】 Counterfeit Dollar

    http://poj.org/problem?id=1013 (题目链接) 题意 12个硬币中有1个是假的,给出3次称重结果,判断哪个硬币是假币,并且判断假币是比真币中还是比真币轻. Solution ...

  4. 环信Restfull API dotnetSDK

    Easemob.Restfull4Net 环信Restfull API dotnet的封装 支持的.Net Framework版本:4.0 API地址:http://docs.easemob.com/ ...

  5. RabbitMQctl命令

    RabbitMQControl RabbitMQ提供了可视化的网页供我们进行一些配置与操作,但是ctl的命令比UI来的专业的多,一些UI无法完成的操作就需要使用ctl命令来进行处理了 这里是官方的文档 ...

  6. codevs 1013 求先序排列(二叉树遍历)

    传送门 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). Input 两个字符串,分别是中序和后序(每行一个) Outp ...

  7. 分析python程序运行时间的几种方法

    最早见过手写的,类似于下面这种: 1 import datetime 2 3 def time_1(): 4 begin = datetime.datetime.now() 5 sum = 0 6 f ...

  8. mysql简单操作(实时更新)

    从表中删除某条记录: delete from table_name where xx=xxxx; 创建数据库(注意不同系统对大小写的敏感性): create database xxx; 查看数据库列表 ...

  9. BZOJ2599 [IOI2011]Race

    传送门 点分治,黄学长的选根方法会T掉,换了这个人的选根方法就可以了. 当然,你也可以选择黄学长的奇淫优化 //BZOJ 2599 //by Cydiater //2016.9.23 #include ...

  10. webservice理解

    什么是webservice? 1.基于web的一种服务,webservice分为服务器端server和客户端client. server端会会提供一些资源供客户端的应用来访问(获取所需要的数据) 2. ...