Prime Query

Time Limit: 1 Second Memory Limit: 196608 KB

You are given a simple task. Given a sequence A[i] with N numbers. You have to perform Q operations on the given sequence.

Here are the operations:

A v l, add the value v to element with index l.(1<=V<=1000)
R a l r, replace all the elements of sequence with index i(l<=i<= r) with a(1<=a<=10^6) .
Q l r, print the number of elements with index i(l<=i<=r) and A[i] is a prime number

Note that no number in sequence ever will exceed 10^7.

Input

The first line is a signer integer T which is the number of test cases.

For each test case, The first line contains two numbers N and Q (1 <= N, Q <= 100000) - the number of elements in sequence and the number of queries.

The second line contains N numbers - the elements of the sequence.

In next Q lines, each line contains an operation to be performed on the sequence.

Output

For each test case and each query,print the answer in one line.

Sample Input

1

5 10

1 2 3 4 5

A 3 1

Q 1 3

R 5 2 4

A 1 1

Q 1 1

Q 1 2

Q 1 4

A 3 5

Q 5 5

Q 1 5

Sample Output

2

1

2

4

0

4

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cstring>

#include <string>

#include <algorithm>

#include <set>

#include <map>

#include <vector>

#include <cmath>

#define VI vector<int>

#define VP vector<Point>

#define pr pair<int,int>

#define LL long long

#define fread() freopen("../in.in","r",stdin)

#define fwrite() freopen("out.out","w",stdout)

using namespace std;

const int Max = 1e7;

const int Maxn = 100000;

typedef struct Tree
{
int num;//记录所在区间的素数的个数 int lazy;//标记所在的区间有没有被整体更新
} Tree; int vis[Max+1000]; Tree Tr[Maxn*5]; int a[Maxn+100]; void init()//素数表
{
memset(vis,0,sizeof(vis)); int m= (int)sqrt(Max); vis[0]=1; vis[1]=1; for(LL i=2; i<=m; i++)
{
if(!vis[i])
{
for(LL j=i*i; j<=Max; j+=i)
{
vis[j]=1;
}
}
}
} void Pushup(int st,int L,int R)//线段树区间向上更新
{
if(Tr[st<<1|1].lazy&&Tr[st<<1].lazy&&Tr[st<<1|1].lazy==Tr[st<<1].lazy)//
{
Tr[st].lazy=Tr[st<<1].lazy;
}
else
{
Tr[st].lazy=0;
} Tr[st].num=Tr[st<<1].num+Tr[st<<1|1].num;
} void Pushdown(int st,int L,int R)//线段树区间向下更新
{
if(Tr[st].lazy&&L!=R)
{
int mid =(L+R)>>1; Tr[st<<1].lazy=Tr[st<<1|1].lazy=Tr[st].lazy; if(Tr[st].num)
{
Tr[st<<1|1].num=R-mid; Tr[st<<1].num=mid+1-L;
}
else
{
Tr[st<<1|1].num=Tr[st<<1].num=0;
} Tr[st].lazy=0;
}
} void Build(int L,int R,int st)//初始化线段树
{
Tr[st].lazy=0; Tr[st].num=0; if(L==R)
{
Tr[st].lazy=a[L]; Tr[st].num=(!vis[a[L]]); return ;
}
int mid=(L+R)>>1; Build(L,mid,st<<1); Build(mid+1,R,st<<1|1); Pushup(st,L,R);
} void Add(int L,int R,int st,int s,int d)//单点更新
{
Pushdown(st,L,R); if(L==s&&R==s)
{
Tr[st].lazy+=d; Tr[st].num=(!vis[Tr[st].lazy]); return ;
}
int mid =(L+R)>>1; if(s<=mid)
{
Add(L,mid,st<<1,s,d);
}
else
{
Add(mid+1,R,st<<1|1,s,d);
} Pushup(st,L,R);
} void Update(int L,int R,int st,int l,int r,int d)//区间更新
{
if(L>r||R<l)
{
return ;
} if(L>=l&&R<=r)
{
Tr[st].lazy=d; Tr[st].num=(!vis[d])*(R-L+1); return ;
} Pushdown(st,L,R); int mid = (L+R)>>1; if(l<=mid)
{
Update(L,mid,st<<1,l,r,d);
} if(r>mid)
{
Update(mid+1,R,st<<1|1,l,r,d);
} Pushup(st,L,R);
} int Query(int L,int R,int st,int l,int r)//区间查询
{
if(L>r||R<l)
{
return 0;
} Pushdown(st,L,R); if(L>=l&&R<=r)
{
return Tr[st].num; }
int mid=(L+R)>>1; int sum=0; if(l<=mid)
{
sum+=Query(L,mid,st<<1,l,r);
} if(r>mid)
{
sum+=Query(mid+1,R,st<<1|1,l,r);
} Pushup(st,L,R); return sum;
}
int main()
{
int T,n,q; int l,r,s,d; char op[3]; init(); scanf("%d",&T); while(T--)
{
scanf("%d %d",&n,&q); for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
} Build(1,n,1); while(q--)
{
scanf("%s",op); if(op[0]=='A')
{
scanf("%d %d",&d,&s); Add(1,n,1,s,d);
}
else if(op[0]=='Q')
{
scanf("%d %d",&l,&r); printf("%d\n",Query(1,n,1,l,r));
}
else if(op[0]=='R')
{
scanf("%d %d %d",&d,&l,&r); Update(1,n,1,l,r,d);
}
}
}
return 0;
}

Prime Query (ZOJ 3911 线段树)的更多相关文章

  1. ZOJ 3911 线段树

    题意:有N个数字,M个操作,然后回答每个Q开头的询问 操作形式: A val pos:在pos位置上+val Q l r:询问l~r之间有多少个质数 R val l r:把l~r之间的数字替换成val ...

  2. HDU 3911 线段树区间合并、异或取反操作

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3911 线段树区间合并的题目,解释一下代码中声明数组的作用: m1是区间内连续1的最长长度,m0是区间内连续 ...

  3. ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  4. ZOJ 3279-Ants(线段树)

    传送门:zoj 3279 Ants Ants Time Limit: 2 Seconds      Memory Limit: 32768 KB echo is a curious and cleve ...

  5. zoj 3888 线段树 ***

    卡n^2,用线段树降到nlogn 记录每个点上所覆盖线段的次小值,保证能有两条路径能走 #include<cstdio> #include<iostream> #include ...

  6. F - Count the Colors ZOJ - 1610 线段树染色(染区间映射)

    题意:给一段0-8000的线段染色 问最后 颜色x 有几段 题解:标准线段树  但是没有push_up  最后查询是单点按顺序查询每一个点 考虑过使用区间来维护不同的线段有多少种各色的线段  思路是 ...

  7. HDU 3911 线段树区间合并

    北京赛区快了,准备袭击数据结构和图论.倒计时 18天,线段树区间合并.维护一个最长连续.. 题意:给一个01串,以下有一些操作,问区间最长的连续的1的个数 思路:非常裸的线段树区间合并 #includ ...

  8. 【HDU5869】 Different GCD Subarray Query 题解 (线段树维护区间GCD)

    题目大意:求区间$[L,R]$中所有子区间产生的最大公因数的个数. ------------------------- 对于$gcd$,我们知道$gcd(a,b,c)=gcd(gcd(a,b),c)$ ...

  9. ZOJ 3911Prime Query [素数处理 + 线段树]

    Time Limit: 5 Seconds Memory Limit: 196608 KBYou are given a simple task. Given a sequence A[i] with ...

随机推荐

  1. hdu Is It A Tree?

    判定给定的边序列是否过程一棵树.我用到的判定方法是:第一步:判定  边数是否等于顶点数-1  第二:判定是否只有一个根节点  .当然还要考虑是否为空树的情况. 但是代码交上去,好几遍都是Runtime ...

  2. strcat、strcpy、memcpy 的使用注意

    char *p = "hello";//5 个长度 ; //char *str = (char *)malloc(sizeof(char)*len); ] = "niha ...

  3. centos下安装mysql遇到的问题

    我前边遇到的坎,竟然和这篇百度经验惊人的相似,他帮我大忙了,十分感谢作者啊,连接双手奉上http://jingyan.baidu.com/article/ce436649fec8533773afd38 ...

  4. VB鼠标指针

    vbDefault 0 (缺省值)形状由对象决定. VbArrow 1 箭头. VbCrosshair 2 十字线(crosshair 指针). VbIbeam 3 I 型 VbIconPointer ...

  5. Android课程---表格布局TableLayout

    特别注意:由于表格布局继承自线性布局,因此并不显示表格线 示例代码: <?xml version="1.0" encoding="utf-8"?> ...

  6. php session详解

    <?php /* * session_abort — Discard session array changes and finish session 舍弃会话序列变化和结束会话 session ...

  7. 前端文摘:Web 开发模式演变历史和趋势

    今天的<前端文摘>给大家分享一篇玉伯的文章.文章详细介绍了 Web 开发的四种常用模式以及未来可能成为流行趋势的 Node 全栈开发模式,相信你看了以后一定会有收获. 您可能感兴趣的相关文 ...

  8. Characteristics of Some CISCs, RISCs, and Superscalar Processors

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Although RISC archite ...

  9. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  10. MVC传递Model

    @using System.Configuration;@using System.Text.RegularExpressions;@model Model.NewInfo  // 指定Module的 ...