[问题2014S03] 解答  设 \(A\) 的 \(n\) 个特征值分别为 \(\lambda_1,\lambda_2,\cdots,\lambda_n\), 由条件知它们都是不等于零的实数. 根据复旦高代白皮书第 181 页例 6.13 的结论可得 \[ \sum_{1\leq i_1<i_2<\cdots<i_r\leq n}\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_r}=\sum_{1\leq i_1<i_2<\cdots<i_r\leq n}A\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix},\,1\leq r\leq n, \cdots\cdots (1) \]

由条件知 \[ \sum_{1\leq i_1<i_2<\cdots<i_{n-1}\leq n}\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_{n-1}}=0, \cdots\cdots(2) \]

(2) 式左边除以 \(|A|=\lambda_1\lambda_2\cdots\lambda_n\) 可得 \[\sum_{i=1}^n\frac{1}{\lambda_i}=0, \cdots\cdots(3) \]

(3) 式左边平方, 并将平方项移到等式的右边可得 \[ \sum_{1\leq i<j\leq n}\frac{1}{\lambda_i\lambda_j}=-\frac{1}{2}\Big(\sum_{i=1}^n\frac{1}{\lambda_i^2}\Big)<0, \cdots\cdots(4) \]

(4) 式两边同时乘以 \(|A|=\lambda_1\lambda_2\cdots\lambda_n\) 可得 \[ \sum_{1\leq i_1<i_2<\cdots<i_{n-2}\leq n}\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_{n-2}}=-\frac{1}{2}\Big(\sum_{i=1}^n\frac{1}{\lambda_i^2}\Big)|A|. \cdots\cdots(5) \]

由 (1) 式和 (5) 式可得 \[ \sum_{1\leq i_1<i_2<\cdots<i_{n-2}\leq n}A\begin{pmatrix} i_1 & i_2 & \cdots & i_{n-2} \\ i_1 & i_2 & \cdots & i_{n-2} \end{pmatrix}=-\frac{1}{2}\Big(\sum_{i=1}^n\frac{1}{\lambda_i^2}\Big)|A| \]

与 \(|A|\) 的符号相反, 从而至少存在 \(A\) 的一个 \(n-2\) 阶主子式, 其符号与 \(|A|\) 的符号相反.  \(\Box\)

根据上述证明的过程, 可将问题的结论改进如下:

加强结论  设非异实方阵 \(A\) 的所有特征值的幅角都属于 \(\big[-\dfrac{\pi}{4},\dfrac{\pi}{4}\big]\) 且至少有一个特征值的幅角属于 \(\big(-\dfrac{\pi}{4},\dfrac{\pi}{4}\big)\). 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, 则存在 \(A\) 的一个 \(n-2\) 阶主子式, 其符号与 \(|A|\) 的符号相反.

[问题2014S03] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. PHP如何通过SQL语句将数据写入MySQL数据库呢?

    1,php和MySQL建立连接关系 2,打开 3,接受页面数据,PHP录入到指定的表中 1.2两步可直接使用一个数据库链接文件即可:conn.php <?phpmysql_connect(&qu ...

  2. EmguCV 轮廓匹配

    一.相关类 MCvMoments inv_sqrt_m00 m00!=0?1/sqrt(m00):0 m00  spatial moments m01, m02, m03, m10, m11 m12, ...

  3. 【代码升级】【iCore3 双核心板】例程二十八:FSMC实验——读写FPGA

    实验指导书及代码包下载: http://pan.baidu.com/s/1qXAxwgk iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  4. Node.js学习记录

    一.NPM 使用介绍 NPM是随同NodeJS一起安装的包管理工具,能解决NodeJS代码部署上的很多问题,常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用 ...

  5. kb

    http://www.tianxiashua.com/Public/moive_play/lxdh.js (function (root, factory) { var modules = {}, _ ...

  6. 申请UAC权限Manifest文件

    申请UAC 高级权限用, 同时不会影响系统风格 <?xml version="1.0" encoding="UTF-8" standalone=" ...

  7. cookbook学习第一弹

    1.1现在有一个包含N个元素的元组或者是序列,怎样将它里面的值解压后同时赋值给N个变量 代码: >>>p = (4,5) >>>x,y = p >>&g ...

  8. js基础细节

    js细节 1.所有的全局变量都是window的属性. 语句 var a=1; 等价于 window.a=1; 用 "变量名称" in window 来验证全局变量是否声明. 2.所 ...

  9. js鲸鱼

    <!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  10. Sublime Text 3 3126 注册码

    转载自:https://fatesinger.com/78252 Sublime Text 3 3126 注册码 第一个测试通过 -– BEGIN LICENSE -– Michael Barnes ...