package chap04_Divide_And_Conquer;

import static org.junit.Assert.*;

import java.util.Arrays;

import org.junit.Test;

/**
* 矩阵相乘的算法
*
* @author xiaojintao
*
*/
public class MatrixOperation {
/**
* 普通的矩阵相乘算法,c=a*b。其中,a、b都是n*n的方阵
*
* @param a
* @param b
* @return c
*/
static int[][] matrixMultiplicationByCommonMethod(int[][] a, int[][] b) {
int n = a.length;
int[][] c = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = 0;
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
} /**
* strassen 算法求矩阵乘法 n为2的幂
*
* @param a
* @param b
* @return
*/
static int[][] matrixMultiplicationByStrassen(int[][] a, int[][] b) {
int n = a.length;
if (n == 1) {
int[][] c = new int[1][1];
c[0][0] = a[0][0] * b[0][0];
return c;
}
int m = n / 2;
int[][] a11, a12, a21, a22, b11, b12, b21, b22;
int[][] c = new int[n][n];
a11 = new int[m][m];
a12 = new int[m][m];
a21 = new int[m][m];
a22 = new int[m][m];
b11 = new int[m][m];
b12 = new int[m][m];
b21 = new int[m][m];
b22 = new int[m][m]; for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
a11[i][j] = a[i][j];
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
b11[i][j] = b[i][j];
}
}
for (int i = 0; i < m; i++) {
for (int j = m; j < n; j++) {
a12[i][j - m] = a[i][j];
}
}
for (int i = 0; i < m; i++) {
for (int j = m; j < n; j++) {
b12[i][j - m] = b[i][j];
}
}
for (int i = m; i < n; i++) {
for (int j = 0; j < m; j++) {
a21[i - m][j] = a[i][j];
}
}
for (int i = m; i < n; i++) {
for (int j = 0; j < m; j++) {
b21[i - m][j] = b[i][j];
}
}
for (int i = m; i < n; i++) {
for (int j = m; j < n; j++) {
a22[i - m][j - m] = a[i][j];
}
}
for (int i = m; i < n; i++) {
for (int j = m; j < n; j++) {
b22[i - m][j - m] = b[i][j];
}
}
int[][] s1 = matrixMinus(b12, b22);
int[][] s2 = matrixAdd(a11, a12);
int[][] s3 = matrixAdd(a21, a22);
int[][] s4 = matrixMinus(b21, b11);
int[][] s5 = matrixAdd(a11, a22);
int[][] s6 = matrixAdd(b11, b22);
int[][] s7 = matrixMinus(a12, a22);
int[][] s8 = matrixAdd(b21, b22);
int[][] s9 = matrixMinus(a11, a21);
int[][] s10 = matrixAdd(b11, b12); int[][] p1 = matrixMultiplicationByStrassen(a11, s1);
int[][] p2 = matrixMultiplicationByStrassen(s2, b22);
int[][] p3 = matrixMultiplicationByStrassen(s3, b11);
int[][] p4 = matrixMultiplicationByStrassen(a22, s4);
int[][] p5 = matrixMultiplicationByStrassen(s5, s6);
int[][] p6 = matrixMultiplicationByStrassen(s7, s8);
int[][] p7 = matrixMultiplicationByStrassen(s9, s10); int[][] t1, t2, t3;
t1 = matrixAdd(p5, p4);
t2 = matrixMinus(t1, p2);
int[][] c11 = matrixAdd(t2, p6);
int[][] c12 = matrixAdd(p1, p2);
int[][] c21 = matrixAdd(p3, p4);
t1 = matrixAdd(p5, p1);
t2 = matrixMinus(t1, p3);
int[][] c22 = matrixMinus(t2, p7);
c = matrixConbine(c11, c12, c21, c22);
return c;
} /**
* 矩阵加法 c=a+b
*
* @param a
* @param b
* @return
*/
static int[][] matrixAdd(int[][] a, int[][] b) {
int n = a.length;
int[][] c = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = a[i][j] + b[i][j];
}
}
return c;
} /**
* 矩阵减法 c=a-b
*
* @param a
* @param b
* @return
*/
static int[][] matrixMinus(int[][] a, int[][] b) {
int n = a.length;
int[][] c = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = a[i][j] - b[i][j];
}
}
return c;
} /**
* 将矩阵的四个部分组合
*
* @param t11
* @param t12
* @param t21
* @param t22
* @return
*/
protected static int[][] matrixConbine(int[][] t11, int[][] t12,
int[][] t21, int[][] t22) {
int n = t11.length;
int m = 2 * n;
int[][] c = new int[m][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = t11[i][j];
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j + n] = t12[i][j];
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i + n][j] = t21[i][j];
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i + n][j + n] = t22[i][j];
}
}
return c;
} @Test
public void testName() throws Exception {
// int[][] a = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
// int[][] b = { { 1, 3, 5 }, { 2, 4, 6 }, { 9, 8, 7 } };
// int[][] c = commonMatrixMultiplication(a, b);
// int[][] c = matrixAdd(a, b); int[][] m = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
int[][] n = { { 1, 3, 5, 7 }, { 2, 4, 6, 8 }, { 4, 3, 2, 1 },
{ 9, 8, 7, 6 } }; int[][] c = matrixMultiplicationByStrassen(m, n);
System.out.println(Arrays.deepToString(c));
int[][] d = matrixMultiplicationByCommonMethod(m, n);
System.out.println(Arrays.deepToString(d));
}
}

暴力求解复杂度为O(n3),Strassen算法为O(n log7)

第四章 分治策略 4.2 矩阵乘法的Strassen算法的更多相关文章

  1. 4-2.矩阵乘法的Strassen算法详解

    题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...

  2. 《算法导论》——矩阵乘法的Strassen算法

    前言: 很多朋友看到我写的<算法导论>系列,可能会觉得云里雾里,不知所云.这里我再次说明,本系列博文时配合<算法导论>一书,给出该书涉及的算法的c++实现.请结合<算法导 ...

  3. 【技术文档】《算法设计与分析导论》R.C.T.Lee等·第4章 分治策略

    分治策略有一种“大事化小,小事化了”的境界,它的思想是将原问题分解成两个子问题,两个子问题的性质和原问题相同,因此这两个子问题可以再用分治策略求解,最终将两个子问题的解合并成原问题的解.有时,我们会有 ...

  4. 分治与递归-Starssen矩阵乘法

    代码实现: /** * 矩阵乘法求解 * @author Administrator * */ public class Strassen { public static final int NUMB ...

  5. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  6. 第4章 分治策略 monge阵列

    /* fi表示第i行的最左最小元素的列小标,则有f0<f1<f2<...<fn-1 取数组的偶数行,组成新的子数组,递归求解最左最小元素的列下表,利用偶数项限定奇数项的范围,再 ...

  7. 数学(矩阵乘法,随机化算法):POJ 3318 Matrix Multiplication

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17783   Accepted: ...

  8. 算法导论 第三章 and 第四章

    第三章 渐进的基本O().... 常用函数 % 和  // 转换 斯特林近似公式 斐波那契数 第四章 分治策略:分解(递归)--解决(递归触底)--合并 求解递归式的3种方法: 1:代入法(替代法): ...

  9. 算法导论-矩阵乘法-strassen算法

    目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了 ...

随机推荐

  1. DDD为何叫好不叫座?兼论DCI与业务分析的方法论

    今天,仔细阅读了园子里面的一个朋友写的<一缕阳光:DDD(领域驱动设计)应对具体业务场景,如何聚焦 Domain Model(领域模型)?>(http://www.cnblogs.com/ ...

  2. Nibbler – 免费的网站测试和指标评分工具

    Nibbler 是一款免费的工具,用于测试网站的各个方面指标.输入任意网站的地址,Nibbler 会给你一份报告,列出网站的10个关键领域的分数,包括可访问性,用户体验,搜索引擎优化,社交媒体和技术等 ...

  3. HTML5 表单新增属性

    1. 表单内元素的form属性 在H5中可以把form放到页面的任何地方,然后为该元素指定一个form属性,属性值为该表单的id,这样就可以声明该元素从属于指定表单了 <form id=&quo ...

  4. MySQL索引类型 btree索引和hash索引的区别

    来源一 Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 ...

  5. JS常用的设计模式

    单例模式 只创建类的唯一一个实例.我们看了好几种可以不通过构造函数和类Java语法达成单例的方法.从另一方面来说,JavaScript中所有的对象都是单例.有时候开发者说的单例是指通过模块化模式创建的 ...

  6. ae_将面积小于1500的Feature同附近Feature进行合并

    private void 合并1500图斑ToolStripMenuItem_Click(object sender, EventArgs e) { /* *将图层中面积小于1500的图斑与之相同BS ...

  7. 设置 Xcode 自动生成代码片段

    一.什么是代码片段 当在Xcode中输入dowhile并回车后,Xcode会出现下图所示的提示代码: 这就是代码片段,目的是使程序员以最快的速度输入常用的代码片段,提高编程效率.该功能是从Xcode4 ...

  8. 自定义View之onMeasure()

    1.自定义View之onMeasure() 2.onMeasure实例分析

  9. 我的Android第一章:Android环境搭建

    今天是Android第一天的学习,对于学习任何一门课程时我们都要对该课程要有基本的了解和认识,了解该课程学点什么内容,学了这门知识我门能够做些什么,这也是对于我们这些刚入门的学习人员来说是一个必须要弄 ...

  10. 移动Web开发(一)

    1.浅谈Web标准 降低开发复杂度,覆盖的技术层面十分广泛,技术标准化. 以HTML为核心,扩展出几个大类的技术标准: a.程序访问: ECMAScript(ES) 3 . ES 5 . ES ham ...