2067. Friends and Berries

Time limit: 2.0 second
Memory limit: 64 MB
There is a group of n children. According to a proverb, every man to his own taste. So the children value strawberries and raspberries differently. Let’s say that i-th child rates his attachment to strawberry as si and his attachment to raspberry as ri.
According to another proverb, opposites attract. Surprisingly, those children become friends whose tastes differ.
Let’s define friendliness between two children vu as: p(vu) = sqrt((sv − su)2 + (rv − ru)2)
The friendliness between three children vuw is the half the sum of pairwise friendlinesses:p(v,u,w) = (p(v,u) + p(v,w) + p(u,w)) / 2
The best friends are that pair of children vu for which v ≠ u and p(vu) ≥ p(v,u,w) for every child w. Your goal is to find all pairs of the best friends.

Input

In the first line there is one integer n — the amount of children (2 ≤ n ≤ 2 · 105).
In the next n lines there are two integers in each line — si and ri (−108 ≤ siri ≤ 108).
It is guaranteed that for every two children their tastes differ. In other words, if v ≠ u then sv≠ su or rv ≠ ru.

Output

Output the number of pairs of best friends in the first line.
Then output those pairs. Each pair should be printed on a separate line. One pair is two numbers — the indices of children in this pair. Children are numbered in the order of input starting from 1. You can output pairs in any order. You can output indices of the pair in any order.
It is guaranteed that the amount of pairs doesn’t exceed 105.

Samples

input output
2
2 3
7 6
1
1 2
3
5 5
2 -4
-4 2
0
Problem Author: Alexey Danilyuk (prepared by Alexey Danilyuk, Alexander Borzunov)
Problem Source: Ural Regional School Programming Contest 2015
Difficulty: 245
 
题意:给n个点,
p(vu) = sqrt((sv − su)^2 + (rv − ru)^2)
p(v,u,w) = (p(v,u) + p(v,w) + p(u,w)) / 2
要求找出p(vu) ≥ p(v,u,w) 的对数
分析:
变形一下,根据三角形两边之和大于第三边的理论。。。
显然当且仅当n个点共线才有答案
 
 #include <iostream>
#include <cstdio>
using namespace std;
#define INF (1000000001) const int N = ;
int n;
typedef long long LL;
struct Point
{
LL x, y;
} arr[N]; inline void input()
{
cin >> n;
for(int i = ; i <= n; i++)
cin >> arr[i].x >> arr[i].y;
} inline LL multi(Point o, Point a, Point b)
{
return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x);
} inline void solve()
{
for(int i = ; i <= n; i++)
if(multi(arr[], arr[], arr[i]) != )
{
cout << << "\n";
return;
} int x = , y = ;
for(int i = ; i <= n; i++)
{
if(arr[i].x < arr[x].x || (arr[i].x == arr[x].x && arr[i].y < arr[x].y)) x = i;
if(arr[i].x > arr[y].x || (arr[i].x == arr[y].x && arr[i].y > arr[y].y)) y = i;
}
cout << << "\n";
cout << x << " " << y << "\n";
} int main()
{
ios::sync_with_stdio();
input();
solve();
return ;
}

ural 2067. Friends and Berries的更多相关文章

  1. URAL 2067 Friends and Berries (推理,数学)

    题意:给定 n 个人,每个人两个值s, r,要满足,p(v, u) = sqrt((sv − su)^2 + (rv − ru)^2), p(v,u,w) = (p(v,u) + p(v,w) + p ...

  2. Friends and Berries URAL - 2067 (计算三点共线和计算的时候的注意点)

    题目链接:https://cn.vjudge.net/problem/URAL-2067 具体思路:判断三点共线就可以了,只有一对点能满足,如果一对就没有那就没有满足的. 在计算的时候,要注意,如果是 ...

  3. 福利到!Rafy(原OEA)领域实体框架 2.22.2067 发布!

    距离“上次框架完整发布”已经过去了一年半了,应群中的朋友要求,决定在国庆放假之际,把最新的框架发布出来,并把帮助文档整理出来,这样可以方便大家快速上手.   发布内容 注意,本次发布,只包含 Rafy ...

  4. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  5. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  6. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  7. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  8. ural 2069. Hard Rock

    2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...

  9. ural 2068. Game of Nuts

    2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...

随机推荐

  1. Ubuntu之MaxScale安装配置

    原文github:https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Documentation-Co ...

  2. 忘记Mysql登录密码

    1,使用安全模式跳过验证: 如果 Mysql在运行,Kill掉. 如果mysqld_safe无法启动,可用管理员权限sudo . 2,本地登录: 启动Mysql 3,修改密码: 5.7之后, 更改密码 ...

  3. Android 录音

    想要实现wav格式的编码时我们也就不能再使用MediaRecorder,而只能使用AudioRecord进行处理

  4. hdu2108(判断凸多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2108 题意: 给出一个多边形的所有顶点,判断是不是凸多边形: 思路: 判断凸多边形的方法比较多,如:若 ...

  5. Foreign key (referential) constraints on DB2 LUW v105

    oreign key constraints (also known as referential constraints or referential integrity constraints) ...

  6. windows 下的tcping 小插件

    如果把插件放在根目录 就要能过cmd切换到根目录 cd \ c:\>tcping -d -t -i 0.06 www.baidu.com 将文件放在c:\WINDOWS\system32目录下, ...

  7. JavaScript中判断对象类型方法大全1

    我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...

  8. sqlplus链接数据库报ORA-09925: Unable to create audit trail file

    [localhost.localdomain]:[/oracle11/app/oracle11/product/11.2.0/dbhome_1/dbs]$ sqlplus / as sysdba SQ ...

  9. Oracle【IT实验室】数据库备份与恢复之四:RMAN(备份与恢复管理器)

    RMAN是ORACLE提供的一个备份与恢复的工具,可以用来备份和还原数据库文件. 归档日志和控制文件.它也可以用来执行完全或不完全的数据库恢复. RMAN可以由命令行接口或者 OEM的 Backup ...

  10. 网站Session 处理方式

    分布式session有以下几种方案: 1. 基于nfs(net filesystem)的session共享 将共享服务器目录mount各服务器的本地session目录,session读写受共享服务器i ...