Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 27316   Accepted: 14052

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

 
原题大意:求最近公共祖先。
解题思路:倍增或者tarjian+并查集离线求。
下面给出倍增算法求LCA。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int num,frist[20010],node[20010],deep[20010],ancestor[20010][17],n;
struct mp
{
int to,next;
}map[20010];
void init()
{
num=0;
memset(ancestor,0,sizeof(ancestor));
memset(frist,0,sizeof(frist));
memset(deep,0,sizeof(deep));
memset(node,0,sizeof(node));
memset(map,0,sizeof(map));
}
void add(int x,int y)
{
++num;
map[num].to=y;
map[num].next=frist[x];frist[x]=num;
}
void build(int v)
{
int i;
for(i=frist[v];i;i=map[i].next)
{
if(!deep[map[i].to])
{
ancestor[map[i].to][0]=v;
deep[map[i].to]=deep[v]+1;
build(map[i].to);
}
}
}
void init_ancestor()
{
int i,j;
for(j=1;j<17;++j)
for(i=1;i<=n;++i)
if(ancestor[i][j-1])
ancestor[i][j]=ancestor[ancestor[i][j-1]][j-1];
return;
}
int lca(int a,int b)
{
int i,dep;
if(deep[a]<deep[b]) swap(a,b);
dep=deep[a]-deep[b];
for(i=0;i<17;++i) if((1<<i)&dep) a=ancestor[a][i];
if(a==b) return a;
for(i=16;i>=0;--i)
{
if(ancestor[a][i]!=ancestor[b][i])
{
a=ancestor[a][i];
b=ancestor[b][i];
}
}
return ancestor[a][0];
}
int main()
{
int T,i,v,w,roof,qv,qw;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
for(i=0;i<n-1;++i)
{
scanf("%d%d",&v,&w);
add(v,w);add(w,v);
ancestor[w][0]=v;
if(!ancestor[v][0]) roof=v;//找根,根不同答案是不同的。
}
deep[roof]=1;
build(roof);
init_ancestor();
scanf("%d%d",&qv,&qw);
printf("%d\n",lca(qv,qw));
}
return 0;
}

  

[最近公共祖先] POJ 1330 Nearest Common Ancestors的更多相关文章

  1. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  2. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  3. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  4. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  5. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  6. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  7. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  8. POJ 1330 Nearest Common Ancestors 【最近公共祖先LCA算法+Tarjan离线算法】

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20715   Accept ...

  9. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

随机推荐

  1. session 存储方式

    Session 的存储方式 在 php.ini 文件中,进行配置. 涉及配置参数: - session.save_handler - session.save_path 注意:这两个参数可以在 PHP ...

  2. Windows消息传递机制详解

    Windows是一个消息(Message)驱动系统.Windows的消息提供了应用程序之间.应用程序与Windows系统之间进行通信的手段.应用程序想要实现的功能由消息来触发,并且靠对消息的响应和处理 ...

  3. Fragment与FragmentAcitvity间的传值

    Fragment与FragmentAcitvity间的传值 FragmentActivity中传值 Bundle bundle=new Bundle(); bundle.putSerializable ...

  4. mac上安装Navicat Premium 破解版+汉化包

    Navicat是一款非常强大的sql分析管理工具.以前一直在windows上面使用. 由于工作的需要,我也是折腾出了这不易的mac破解版.下了好多网上的版本,亲测这个可用. 俗话说:工欲善其事,必先利 ...

  5. 使用Android studio 出现的问题解决

    问题一.安装过程中出现的报错Failed to install Intel HAXM 解决:重启电脑,启动BIOS,我的是惠普的,开机时按F10就进去了 切换到Configuration选项,将设置I ...

  6. python学习之列表语法

    1.列表 1 list.append(obj)在列表末尾添加新的对象2 list.count(obj)统计某个元素在列表中出现的次数3 list.extend(seq)在列表末尾一次性追加另一个序列中 ...

  7. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  8. 首师大附中科创教育平台 我的刷题记录 0325 50212228海岛帝国:LYF的太空运输站

    今天给大家献上“D”级题:50212228海岛帝国:LYF的太空运输站!!   试题编号:0325     50212228海岛帝国:LYF的太空运输站 难度级别:D: 运行时间限制:40ms: 运行 ...

  9. 登录锁定状态下Win7关机技巧总结

    登录锁定状态下Win7关机技巧总结 一般在锁定状态都是有个关闭电脑的图标的.但是如果你的系统没有,那么怎么样关机呢,所谓的锁定状态通常是指电脑在登录界面,具体的实现如下,感兴趣的朋友可以参考下 现在大 ...

  10. [转] 浅谈Linux系统的启动流程

    原文:http://blog.csdn.net/justdb/article/details/9621271 版权声明:本文为博主原创文章. Linux系统的启动时通过读取不同的配置文件,执行相应的S ...