Game Theory Reveals the Future of Deep Learning

Carlos E. Perez

Deep Learning Patterns, Methodology and Strategy @ IntuitionMachine.com

译自:https://medium.com/intuitionmachine/game-theory-maps-the-future-of-deep-learning-21e193b0e33a#.2vjbrl5di

若你一直follow他的文章,你会渐渐相信,对于那些资深的深度学习实践者来说,在新架构出现的设计中出现博弈论的概念是显而易见的。这种直觉来自于以下两方面的原因。其一,深度学习系统最终会需要那些能够处理有瑕疵的知识的场景。事实上,我们已经看到Deep Mind的AlphaGo仅使用了部分的知识,就从技巧性和策略性两方面,在Go中战胜了世界级的人类高手。其二,系统不会像现在这样保持独立,而是更倾向于涉及多个一致或具有竞争关系的深度学习系统的团体。我们已经看到的对抗网络就是这种构造。对抗网络包括两个具有竞争关系的神经网络,一个是生成网络,一个判别网络,前者试图伪造图像,后者试图鉴别图像真伪。这些系统的有趣特征是闭式损失是不需要的。事实上,一些系统甚至具备发现自身损失函数的惊人能力!对抗网络的缺点是它们训练困难。对抗学习包含了寻找两人非合作游戏中的纳什均衡(Nash Equilibrium)。Yann Lecun曾经在一次关于无监督学习的讲座中称,对抗网络是近20年来机器学习中最酷的想法。

(一)David Balduzzi的Semantics, Representations and Grammars of Deep Learning

我们仍旧处于使用博弈论的初级阶段,但是从更深层次来看,一些论文是具有博弈论基础的。David Balduzzi有一个采用博弈论方法的深度学习框架。在他的paper“Semantics, Representations and Grammars of Deep Learning”,他写道:

“一个潜在的批评是这种形式化太宽泛了。......然而,通过将简单函数的组合视为深度学习体系结构的共有的必要特征,开拓有趣的非凸游戏的子类是可能的。组合特性通过分布式通讯协议与语法来形式化。”

博弈论以非常优雅的方式涵盖其他方面混乱的主题。他用一个非常漂亮的图来凸显这种方法的实力,整本书都是用这种方法的角度来写。

(二)David Silver以及Johannes Heinrich的Deep Reinforcement Learning from Self-play in imperfect-information games.

他写道:“We have introduced NFSP, the first end-to-end deep reinforcement learning approach to learning approximate Nash Equilibria of imperfect-information games from self-play. Unlike previous game theoretic methods, NFSP is scalable without prior domain knowledge. Furthermore, NFSP is the first deep reinforcement learning method known to converge to approximate Nash Equilibria in self-play.”

(三)Jason Hartford的Deep Learning for Predicting Human Strategic Behavior

Jason Hartford等人使用深度学习来预测人类的行为。论文中提到:“The behavioral game theory literature has developed a wide range of models for predicting human behavior in strategic settings by incorporating cognitive biases and limitations derived from observations of play and insights from cognitive psychology...”

(四)作者的思考与总结

我们看到了三个不同的玩家采用三种不同的方式来看待博弈论在深度学习中所起作用。(1)作为一种描述和分析新的深度学习架构的方法;(2)作为一种构建学习策略的方法;(3)作为一种预测人类参与者行为的方法。最后一种应用会令你毛骨悚然。

数学家们提供给我们抽象的表示,来帮助我们理解复杂系统。然而,任何一种形式的抽象都有其局限性所在,这里就忽略细节了。我们可以拟定一些关于几何、动力、逻辑的直觉来展示这些系统如何运行。但是,我们开始隐约发现这些系统所包含的分类器是从其他分类其构建的。它们本身就是自相似的系统,应当将它们视为一个互相交互的集合。进一步讲,这些机器设计的目的在于预测未来。而预测需要不完备的、有瑕疵的数据。因此,我们需要数学框架来研究具有多种信息的多体交互行为。

传统的机器学习观点从优化的角度看问题,所有需要的就是能够找到最优解的算法。然而,采用机器学习,我们想要构建的学习机器不能对数据过拟合,但却能很好的处理没有见过的数据。换句话说,我们想要这些机器能够预测未知。这个要求称为泛化,与传统的优化问题是非常不同的。它与传统的动力学问题也很不一样,因为动力学问题要求所有的信息是已知的。这也是为什么深度学习中的好多工程都需要在优化问题的基础上添加额外的约束。这些约束在一些文章中被称为先验,在优化问题中被称为正则化。

正则化来自何处?我们如何选择一个好的正则化方法?我们如何处理有瑕疵的信息?这些都是博弈论观点的重要性所在。泛化有时也可以称为结构风险最小化。换句话说,我们构建一种能够处理泛化的机制,所采用的的方法策略就是类似于多体如何减轻风险。事实上,我们又回到了原点。博弈论被描述为:研究智能理智决策者之间如何竞争与合作的数学模型。理解机器学习最终归结于研究智能体之间交互的数学。

博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)的更多相关文章

  1. 使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning

    使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸 ...

  2. 深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记

    写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运 ...

  3. 吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记

    第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法, ...

  4. 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN

    [前言]      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...

  5. 深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全

    深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全 原文地址:Image Completion with Deep Learning in TensorFlow by Bra ...

  6. Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一

    Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...

  7. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  9. NLP+词法系列(二)︱中文分词技术简述、深度学习分词实践(CIPS2016、超多案例)

    摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bce ...

随机推荐

  1. WCF框架处理流程初探

    拜读了大牛蒋金楠的<WCF技术剖析之一:通过一个ASP.NET程序模拟WCF基础架构>,写点心得. (原文:http://www.cnblogs.com/artech/archive/20 ...

  2. Use Spring transaction to simplify Hibernate session management

    Spring对Hibernate有很好的支持    DataSource ->SessionFactory-> HibernateTranscationManagerHibernate中通 ...

  3. clientTop、offsetTop和scrollTop的区分

    页可见区域宽: document.body.clientWidth; 网页可见区域高: document.body.clientHeight; 网页可见区域宽: document.body.offse ...

  4. mvc4 分离Controller 出现 未找到路径“/”的控制器或该控制器未实现 IController

    一般MVC项目都会把Controller 分离出来独立类库,以前用mvc3一直这样做,测试发布都能够正常运行,这次用了mvc4,发现会报错:HTTP 404.您正在查找的资源(或者它的一个依赖项)可能 ...

  5. SQL Server提高事务复制效率优化(一)总体概述

      随着公司业务的发展,数据量增长迅速,在解决Scale Out的同时,还要考虑到主从的复制延迟问题,尽量降到1s以内满足线上业务,如果不调整,SQL Server默认的配置可能平均要3s左右.生产的 ...

  6. Window 对象详解 转自 http://blog.csdn.net/jcx5083761/article/details/41243697

    详解HTML中的window对象和document对象 标签: HTMLwindowdocument 2014-11-18 11:03 5884人阅读 评论(0) 收藏 举报 分类: HTML& ...

  7. mybatis读取配置文件报错:Could not find resource configuration.xml

    今天用idea编译mybatis的java项目时,一直报错,找不到config.xml 查看class文件夹,确实没有xml文件 也就是说,xml文件没在编译范围内 在pom.xml中,把xml文件加 ...

  8. centos环境自动化批量安装软件脚本

    自动化安装jdk软件部署脚本 准备工作: 1.在执行脚本的服务器上生成免密码公钥: 安装expect命令 yum install -y expect ssh-keygen 三次回车 2.将jdk-7u ...

  9. heartbeat重要文件的配置参数说明

    主要三个重要的文件:ha.cf, authkey, haresource 1)ha.cf的重要参数的说明: 参数 说明 debugfile  /var/log/ha-debug           h ...

  10. IntelliJ IDEA 15.0.2远程debug tomcat

    背景 在最近的java项目中使用了linux环境下编译的so文件,所以无法在window环境下debug,故此有了这篇文章 环境 jdk:jdk-8u101-linux-x64 os:CentOS r ...