Nudnik Photographer -Ural1260动态规划
| Time limit: 1.0 second | Memory limit: 64 MB |
|---|
If two people were born one after another with one second difference and one of them is a child, then the other one is a child too. We get by induction that all the people are children.
Everyone knows that the mathematical department of the Ural State University is a big family of N persons, 1, 2, 3, …, N years old respectively.
Once the dean of the department ordered a photo if his big family. There were to be present all the students of the department arranged in one row. At first the dean wanted to arrange them by their age starting from the youngest student, but than he decided that it would look unnatural. Than he advised to arrange the students as follows:
The 1 year old student is to sit at the left end of the row.
The difference in ages of every two neighbors mustn’t exceed 2 years.
The dean decided that thereby the students would seem look as they were arranged by their ages (one can hardly see the difference in ages of 25 and 27 years old people). There exist several arrangements satisfying to the requirements. Photographer didn’t want to thwart dean’s desire and made the photos of all the possible mathematical department students’ arrangements.
Input
There is the integer number N, 1 ≤ N ≤ 55.
Output
the number of photos made by the photographer.
Sample
| input | output |
|---|---|
| 4 | 4 |
Notes
If N = 4 then there are following possible arrangements: (1,2,3,4), (1,2,4,3), (1,3,2,4) and (1,3,4,2).
| Problem Author: | Alexander Ipatov |
|---|---|
| Problem Source: | Open collegiate programming contest for high school children of the Sverdlovsk region, October 11, 2003 |
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL;
LL Dp[60][5];
int main()
{
Dp[1][1] = 0;
Dp[1][2] = 1;
Dp[1][3] = 0;
Dp[1][4] = 0;
Dp[2][1] = 0;
Dp[2][2] = 1;
Dp[2][3] = 0;
Dp[2][4] = 0;
for(int i=3;i<=55;i++)
{
Dp[i][1]+=Dp[i-1][2];
Dp[i][2]+=(Dp[i-1][2]+Dp[i-1][4]);
Dp[i][3]+=(Dp[i-1][1]+Dp[i-1][3]);
Dp[i][4]+=(Dp[i-1][1]);
}
int n;
while(~scanf("%d",&n))
{
cout<<Dp[n][1]+Dp[n][2]+Dp[n][3]+Dp[n][4]<<endl;
}
return 0;
}
Nudnik Photographer -Ural1260动态规划的更多相关文章
- 递推DP URAL 1260 Nudnik Photographer
题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> ...
- Ural 1260 A nudnik photographer(DP)
A nudnik photographer 大意: 对1到N这些数进行排列,1必需要在最左边.相邻的两个数之间的差值不能超过2,问有多少种排列的方法. 思路: 对座位进行DP,当第一个是1,第二个是2 ...
- Ural 1260 Nudnik Photographer
Problem Description If two people were born one after another with one second difference and one of ...
- URAL 1260 Nudnik Photographer(递推)
题目链接 题意 : 给你1到n这n个数,排成一排,然后1放在左边最开始,剩下的数进行排列,要求排列出来的数列必须满足任何两个相邻的数之间的差不能超过2,问你有多少种排列 思路 : 对于dp[n], n ...
- URAL 1260 Nudnik Photographer DFS DP
题目:click here :这个题可以先dfs深搜下,规律dp dfs: #include <bits/stdc++.h> using namespace std; #define S ...
- URAL(DP集)
这几天扫了一下URAL上面简单的DP 第一题 简单递推 1225. Flags #include <iostream> #include<cstdio> #include< ...
- URAL DP第一发
列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
随机推荐
- WordPress基础:固定链接的设置
安装wordpressp后的工作之一最好修改固定链接,原因就是wp默认的/?p=123形式不利于搜索引擎优化而且也不美观. URL结构参数说明:%year%:日志发表的年份,如2009%monthnu ...
- Ubuntu上安装Karma失败对策
在Ubuntu上安装Karma遇到超时 timeout 错误.Google了一下,国外的码农给了一个快捷的解决方案,实测可行,贴在这里: sudo apt-get install npm nodejs ...
- sys.stdout.write与sys.sterr.write(二)
目标: 1.使用sys.stdout.write模拟火车道轨迹变化过程 2.使用sys.stderr.write模拟火车道轨迹变化过程 1.sys.stdout.write模拟火车道轨迹变化 代码如下 ...
- Python之路----------shutil模块
高级的文件.文件夹.压缩包 处理模块 复制文件: import shutil f1 = open('test') f2 = open('test2','w') shutil.copyfileobj(f ...
- xl2tp部署
参考 http://blog.51yip.com/linux/1795.html 说到VPN,就会想到google,满心的疼.以前写过一篇关于vpn的文单,请参考:centos5.5 vpn 安装配置 ...
- haproxy para config
.. from http://www.cnblogs.com/dkblog/archive/2012/03/13/2393321.html 常用配置选项: OPTION 选项: option http ...
- 代码审计之SQL注入
0x00概况说明 0x01报错注入及利用 环境说明 kali LAMP 0x0a 核心代码 现在注入的主要原因是程序员在写sql语句的时候还是通过最原始的语句拼接来完成,另外SQL语句有Select. ...
- LinQ 简单使用
LinQ: 1.LinQ to Sql类(NET Language Integrated Query (LINQ) ) LINQ定义了大约40个查询操作符,如select.from.in.where以 ...
- 怎样给Myeclipse配置tomcat服务器
http://jingyan.baidu.com/article/4853e1e53465271909f72690.html Meclipse是java Web企业级开发中最流行的工具,java we ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...