Time limit: 1.0 second Memory limit: 64 MB

If two people were born one after another with one second difference and one of them is a child, then the other one is a child too. We get by induction that all the people are children.

Everyone knows that the mathematical department of the Ural State University is a big family of N persons, 1, 2, 3, …, N years old respectively.

Once the dean of the department ordered a photo if his big family. There were to be present all the students of the department arranged in one row. At first the dean wanted to arrange them by their age starting from the youngest student, but than he decided that it would look unnatural. Than he advised to arrange the students as follows:

The 1 year old student is to sit at the left end of the row.

The difference in ages of every two neighbors mustn’t exceed 2 years.

The dean decided that thereby the students would seem look as they were arranged by their ages (one can hardly see the difference in ages of 25 and 27 years old people). There exist several arrangements satisfying to the requirements. Photographer didn’t want to thwart dean’s desire and made the photos of all the possible mathematical department students’ arrangements.

Input

There is the integer number N, 1 ≤ N ≤ 55.

Output

the number of photos made by the photographer.

Sample

input output
4 4

Notes

If N = 4 then there are following possible arrangements: (1,2,3,4), (1,2,4,3), (1,3,2,4) and (1,3,4,2).

Problem Author: Alexander Ipatov
Problem Source: Open collegiate programming contest for high school children of the Sverdlovsk region, October 11, 2003

看的我啸的博客

#include <cstdio>
#include <cstring>
#include <iostream> using namespace std; typedef long long LL; LL Dp[60][5]; int main()
{
Dp[1][1] = 0;
Dp[1][2] = 1;
Dp[1][3] = 0;
Dp[1][4] = 0; Dp[2][1] = 0;
Dp[2][2] = 1;
Dp[2][3] = 0;
Dp[2][4] = 0; for(int i=3;i<=55;i++)
{
Dp[i][1]+=Dp[i-1][2]; Dp[i][2]+=(Dp[i-1][2]+Dp[i-1][4]); Dp[i][3]+=(Dp[i-1][1]+Dp[i-1][3]); Dp[i][4]+=(Dp[i-1][1]);
}
int n; while(~scanf("%d",&n))
{
cout<<Dp[n][1]+Dp[n][2]+Dp[n][3]+Dp[n][4]<<endl;
}
return 0;
}

Nudnik Photographer -Ural1260动态规划的更多相关文章

  1. 递推DP URAL 1260 Nudnik Photographer

    题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> ...

  2. Ural 1260 A nudnik photographer(DP)

    A nudnik photographer 大意: 对1到N这些数进行排列,1必需要在最左边.相邻的两个数之间的差值不能超过2,问有多少种排列的方法. 思路: 对座位进行DP,当第一个是1,第二个是2 ...

  3. Ural 1260 Nudnik Photographer

    Problem Description If two people were born one after another with one second difference and one of ...

  4. URAL 1260 Nudnik Photographer(递推)

    题目链接 题意 : 给你1到n这n个数,排成一排,然后1放在左边最开始,剩下的数进行排列,要求排列出来的数列必须满足任何两个相邻的数之间的差不能超过2,问你有多少种排列 思路 : 对于dp[n], n ...

  5. URAL 1260 Nudnik Photographer DFS DP

    题目:click here :这个题可以先dfs深搜下,规律dp dfs: #include <bits/stdc++.h> using namespace std; #define S ...

  6. URAL(DP集)

    这几天扫了一下URAL上面简单的DP 第一题 简单递推 1225. Flags #include <iostream> #include<cstdio> #include< ...

  7. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  8. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  9. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

随机推荐

  1. 分析器错误消息: 未能加载类型“Automation.Web.MvcApplication”。

    常见原因1 : 可能是自己手动修改了项目 ==>属性==>生成的输出路径 ,导致版本不兼容 常见员因2  :  Global的 命名空间 与 项目的命名空间 不一致 常见原因3  : 查看 ...

  2. ORA-29275: partial multibyte character

    查询表报错 修改方式1 和字符集存储方式有关系 ,修改客户端和服务器的字符集存储方害死 修改方式2 修改表的字段由nvarchar2修改为varchar2

  3. LeetCode Moving Average from Data Stream

    原题链接在这里:https://leetcode.com/problems/moving-average-from-data-stream/ 题目: Given a stream of integer ...

  4. python之路 目录

    目录 python python_基础总结1 python由来 字符编码 注释 pyc文件 python变量 导入模块 获取用户输入 流程控制if while python 基础2 编码转换 pych ...

  5. 编译错误:/usr/bin/ld: cannot find -lz

    编译时出现错误/usr/bin/ld: cannot find -lz,安装zlib和zlib-devel yum install zlib yum install zlib-devel

  6. 利用jQuery来扩展一个瀑布流插件

      简单了解jQuery.fn.extend() jQuery.fn.extend()函数用于为jQuery扩展一个或多个实例属性和方法(主要用于扩展方法). (截图来自jQuery文档) 为了更清晰 ...

  7. Oracle分页查询

    1.无ORDER BY排序的写法.(效率最高) 经过测试,此方法成本最低,只嵌套一层,速度最快!即使查询的数据量再大,也几乎不受影响,速度依然! sql语句如下: SELECT * FROM (Sel ...

  8. CAS学习笔记(一)

    近期做单点登录,看了一些CAS资料,做下总结 一.cas简介 全名:Central Authentication Service 特点: 1.开源的.多协议的 SSO 解决方案: Protocols  ...

  9. Android 自定义 view(三)—— onDraw 方法理解

    前言: 上一篇已经介绍了用自己定义的属性怎么简单定义一个view<Android 自定义view(二) -- attr 使用>,那么接下来我们继续深究自定义view,下一步将要去简单理解自 ...

  10. Android Activity 管理 (AppManager)(非原创)

    AppManager 类: /** * 应用程序Activity管理类:用于Activity管理和应用程序退出 *  */ public class AppManager {     private ...