On One Side Kolmogorov Type Inequalities
Let \(X_1,X_2,\ldots,X_n\) be independent random variables. Denote
\[S_n=\sum_{i=1}^n X_i.\]
The well known Kolmogrov inequality can be stated as for all \(\varepsilon> 0\) \[P\left(\max_{1\le j\le n}|S_j|\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2}.\]
The one side kolmogrov type ineqalites are stated as for all \(\varepsilon>0\)\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}.\] We will prove this inequality in the following.
Proposition. Let\(X\) be a random variable with \(Var(X)<\infty\). Then for all \(\varepsilon>0\)\[ P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]
Proof. Without loss of generality, we may assume that \(E(X)=0\). Then \[ \varepsilon=E(\varepsilon - X)=E\{(\varepsilon - X)I_{X<\varepsilon}\}+E\{(\varepsilon - X)I_{X\ge \varepsilon}\}\le E\{(\varepsilon - X)I_{X< \varepsilon}\}.\] By Cauchy-Schwardz's inequality, We have\[ \varepsilon^2\le \left[E\{(\varepsilon - X)I_{X<\varepsilon}\}\right]^2\le E(\varepsilon + X)^2P(X<\varepsilon)=[\varepsilon^2+Var(X)][1-P(\ge\varepsilon)].\] Therefor,\[P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]
Proof of the one side Kolmogorov type inequality. Let \(\Lambda=\{\max_{1\le j\le n}S_j \ge \varepsilon\}\) and \(\Lambda_k=\{\max_{1\le j <k}S_j < \varepsilon, S_k\ge\varepsilon\}\), then \(\Lambda =\bigcup_{k=1}^{n}\Lambda_k\). Without loss of generality, we assume that \(E(X_j)=0,j=1,\ldots,n.\) Then by the independence of the random variables,\[\begin{array}{rcl}\varepsilon&=&E[\varepsilon -S_n]=E[(\varepsilon-S_n)I_{\Lambda}]+[(\varepsilon-S_n)I_{\Lambda}^c]\\ &=&\sum_{k=1}^n[(\varepsilon-S_n)I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[\{(\varepsilon-S_k) -(S_n-S_k)\}I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+\sum_{k=1}^n[E(S_n-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &\le&E[(\varepsilon-S_n)I_{\Lambda^c}].\end{array}\]
By Cauchy-Schwardz's inequality, we have
\[\varepsilon^2\le \{E[(\varepsilon-S_n)I_{\Lambda^c}]\}^2\le E[(\varepsilon-S_n)]^2 P(I_{\Lambda^c})=[\varepsilon^2+Var(S_n^2)][1-P(\Lambda)].\] Therefore,
\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}\] as the inequality claimed.
Remark. The one side Kolmogorov type inequality is also true for martingale difference sequence as well as demimartingales, the proof is samilar.
On One Side Kolmogorov Type Inequalities的更多相关文章
- [家里蹲大学数学杂志]第432期Hardy type inequalities
If $p>1$, $f\geq 0$, and $$\bex F(x)=\int_0^x f(t)\rd t, \eex$$ then $$\bee\label{Hardy:0 to x} \ ...
- 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]
家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...
- salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type)
本篇引用以下三个链接: http://www.tgerm.com/2012/01/recordtype-specific-picklist-values.html?m=1 https://github ...
- AutoMapper:Unmapped members were found. Review the types and members below. Add a custom mapping expression, ignore, add a custom resolver, or modify the source/destination type
异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 应用场景:ViewModel==>Mode映射的时候出错 AutoMappe ...
- $.type 怎么精确判断对象类型的 --(源码学习2)
目标: var a = [1,2,3]; console.log(typeof a); //->object console.log($.type(a)); //->ar ...
- input type='file'上传控件假样式
采用bootstrap框架样式 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> &l ...
- mount报错: you must specify the filesystem type
在linux mount /dev/vdb 到 /home 分区时报错: # mount /dev/vdb /homemount: you must specify the filesystem ty ...
- error C4430:missing type specifier 解决错误
错误 3 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int ...
- The type javax.ws.rs.core.MediaType cannot be resolved. It is indirectly referenced from required .class files
看到了http://stackoverflow.com/questions/5547162/eclipse-error-indirectly-referenced-from-required-clas ...
随机推荐
- java多线程详解(4)-多线程同步技术与lock
前言:本篇文章是对Synchronized和java.util.concurrent.locks.Lock的区别进行了详细的分析介绍 上一篇文章末最后介绍了synchronized的一些缺陷,本文主要 ...
- Excel2016右键新建工作表,打开时提示“因为文件格式或文件扩展名无效。请确定文件未损坏,并且文件扩展名与文件的格式匹配。”的解决办法
上午新建excel工作表时,发现新建完之后居然打不开 提示: 尼玛这坑爹的,难道我的Excel坏了?? 排查问题之后发现 只有新建“Microsoft Excel 工作表”时会出现这种问题,新建“Wo ...
- javascript面向对象(三)
主要内容: 利用原型链的方式实现继承: 原型继承的特点:即继承了父类的模板,也继承了父类的原型对象. 类继承:只继承模板(借用构造函数的方式继承). 利用call.apply方法实现: 混合继承: 扩 ...
- HttpWebResponse远程服务器返回错误: (500) 内部服务器错误。
现象 我们编码实现请求一个页面时,请求的代码类似如下代码: HttpWebRequest req = (HttpWebRequest)WebRequest.Create(strUrl); req.Us ...
- 禁止VMware虚拟机与Host的时间同步
禁止VMware虚拟机与Host的时间同步 1. 查看虚拟机是否安装了 VMware Tools, 如果有安装,则将 VMware Tools 属性窗口的“选项”-->“其他选项”中“虚拟机与宿 ...
- 解决jquery1.9不支持browser对象的问题||TypeError: $.browser is undefined
在插件的源代码里插入如下代码: (function(jQuery){ if(jQuery.browser) return; jQuery.browser = {}; jQuery.browser.mo ...
- css之滚动条
overflow:auto; overflow-x:auto; overflow-y:auto;
- 给自己立下一个巨大的flag
[BZOJ1861][BZOJ3224] [BZOJ2733][BZOJ1056] [BZOJ2120][BZOJ3673] [BZOJ1833][BZOJ1026] [BZOJ3209][BZOJ1 ...
- 《数据结构》 java的一维数组的内存结构与其特性
1{数组的概念: 数组是相同类型变量的集合,可以使用共同的名字引用它.数组也可以被定义为任何类型,可以是一维或者二维的.数组的访问时通过其对应的下标来实现的.数组提供了一种将有联系的信息便利分组的方式 ...
- iOS原生地图开发指南续——大头针与自定义标注
iOS原生地图开发指南续——大头针与自定义标注 出自:http://www.sxt.cn/info-6042-u-7372.html 在上一篇博客中http://my.oschina.net/u/23 ...