Let \(X_1,X_2,\ldots,X_n\) be independent random variables. Denote

\[S_n=\sum_{i=1}^n X_i.\]

The  well known Kolmogrov inequality can be stated as for all \(\varepsilon> 0\) \[P\left(\max_{1\le j\le n}|S_j|\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2}.\]

The one side kolmogrov type ineqalites are stated as for all \(\varepsilon>0\)\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}.\]  We will prove this inequality in the following.

Proposition. Let\(X\) be a random variable with \(Var(X)<\infty\). Then for all \(\varepsilon>0\)\[ P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]

Proof. Without loss of generality, we may assume that \(E(X)=0\). Then \[ \varepsilon=E(\varepsilon - X)=E\{(\varepsilon  - X)I_{X<\varepsilon}\}+E\{(\varepsilon  - X)I_{X\ge \varepsilon}\}\le E\{(\varepsilon  - X)I_{X< \varepsilon}\}.\] By Cauchy-Schwardz's inequality, We have\[ \varepsilon^2\le \left[E\{(\varepsilon  - X)I_{X<\varepsilon}\}\right]^2\le E(\varepsilon  + X)^2P(X<\varepsilon)=[\varepsilon^2+Var(X)][1-P(\ge\varepsilon)].\] Therefor,\[P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]

Proof of the one side Kolmogorov type inequality. Let \(\Lambda=\{\max_{1\le j\le n}S_j \ge \varepsilon\}\) and \(\Lambda_k=\{\max_{1\le j <k}S_j < \varepsilon, S_k\ge\varepsilon\}\), then \(\Lambda =\bigcup_{k=1}^{n}\Lambda_k\). Without loss of generality, we assume that \(E(X_j)=0,j=1,\ldots,n.\) Then by the independence of the random variables,\[\begin{array}{rcl}\varepsilon&=&E[\varepsilon -S_n]=E[(\varepsilon-S_n)I_{\Lambda}]+[(\varepsilon-S_n)I_{\Lambda}^c]\\ &=&\sum_{k=1}^n[(\varepsilon-S_n)I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[\{(\varepsilon-S_k) -(S_n-S_k)\}I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+\sum_{k=1}^n[E(S_n-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &\le&E[(\varepsilon-S_n)I_{\Lambda^c}].\end{array}\]

By Cauchy-Schwardz's inequality, we have

\[\varepsilon^2\le \{E[(\varepsilon-S_n)I_{\Lambda^c}]\}^2\le E[(\varepsilon-S_n)]^2 P(I_{\Lambda^c})=[\varepsilon^2+Var(S_n^2)][1-P(\Lambda)].\] Therefore,

\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}\] as the inequality claimed.

Remark. The one side Kolmogorov type inequality is also true for martingale difference sequence as well as demimartingales, the proof is samilar.

On One Side Kolmogorov Type Inequalities的更多相关文章

  1. [家里蹲大学数学杂志]第432期Hardy type inequalities

    If $p>1$, $f\geq 0$, and $$\bex F(x)=\int_0^x f(t)\rd t, \eex$$ then $$\bee\label{Hardy:0 to x} \ ...

  2. 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]

    家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...

  3. salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type)

    本篇引用以下三个链接: http://www.tgerm.com/2012/01/recordtype-specific-picklist-values.html?m=1 https://github ...

  4. AutoMapper:Unmapped members were found. Review the types and members below. Add a custom mapping expression, ignore, add a custom resolver, or modify the source/destination type

    异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 应用场景:ViewModel==>Mode映射的时候出错 AutoMappe ...

  5. $.type 怎么精确判断对象类型的 --(源码学习2)

    目标:  var a = [1,2,3];     console.log(typeof a); //->object     console.log($.type(a)); //->ar ...

  6. input type='file'上传控件假样式

    采用bootstrap框架样式 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> &l ...

  7. mount报错: you must specify the filesystem type

    在linux mount /dev/vdb 到 /home 分区时报错: # mount /dev/vdb /homemount: you must specify the filesystem ty ...

  8. error C4430:missing type specifier 解决错误

    错误    3    error C4430: missing type specifier - int assumed. Note: C++ does not support default-int ...

  9. The type javax.ws.rs.core.MediaType cannot be resolved. It is indirectly referenced from required .class files

    看到了http://stackoverflow.com/questions/5547162/eclipse-error-indirectly-referenced-from-required-clas ...

随机推荐

  1. python出输出字符串方式:

    python出输出字符串方式: >>> who='knights' >>> what='NI' >>> print ('we are the',w ...

  2. C#设置字体(FontDIalog)、颜色(ColorDialog)对话框控件

    设置字体控件为FontDialog,设置颜色的控件为ColorDialog.这两个控件的使用和OpenFileDialog(打开文件)及FolderBroswerDialog(打开文件夹)的使用类似. ...

  3. 关于 Netty Channel 的 Autoread

    Netty 4 的 Channel 多了一个 autoread 参数, 它的用处是在让 channel 在触发某些事件以后(例如 channelActive, channelReadComplete) ...

  4. NOIp蒟蒻的爆零记——HA-0132

    考前: 从十一月开始的听课集训,连考六场:考前的最后两天写(da)着(zhe)各种各样的奇(C)葩(S)模板:一周的疯狂,已经过去: 考前的一晚:第二批高二的六个人聚在一起(还有滑稽大师),愉快的玩( ...

  5. vim深入研究

    About VIM--Unix及类Unix系统文本编辑器 Vim是一个类似于Vi的著名的功能强大.高度可定制的文本编辑器,在Vi的基础上改进和增加了很多特性.VIM是纯粹的自由软件. Vim普遍被推崇 ...

  6. cv_prj2

    Computer Vision Project 2 – Harris Corner Detector 姓名: 王兴路 学号: 3140102282 指导老师: 宋明黎 2016-12-16 19:30 ...

  7. cassandra-执行请求入口函数

    参考 http://ju.outofmemory.cn/entry/115864 org.apache.cassandra.transport.Message中静态Dispatcher的 channe ...

  8. Sql Server 常用操作2

    FOR XML PATH应用 stuID学生编号,sName代表学生姓名,hobby列存学生的爱好! SELECT B.sName,LEFT(StuList,LEN(StuList)-1) as ho ...

  9. Thinkphp 学习笔记

    前后台配置: 在根目录文件夹中创建一个Conf文件夹 Conf文件夹下建立一个config.php文件,里面存放公共配置信息,方便前后台调用. 简单定义404页面 伪静态去除.html Config中 ...

  10. Apache 网站301重定向

    1. Apache模块 开启rewrite 2..htaccess文件中 <IfModule mod_rewrite.c> Options +FollowSymlinks RewriteE ...