On One Side Kolmogorov Type Inequalities
Let \(X_1,X_2,\ldots,X_n\) be independent random variables. Denote
\[S_n=\sum_{i=1}^n X_i.\]
The well known Kolmogrov inequality can be stated as for all \(\varepsilon> 0\) \[P\left(\max_{1\le j\le n}|S_j|\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2}.\]
The one side kolmogrov type ineqalites are stated as for all \(\varepsilon>0\)\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}.\] We will prove this inequality in the following.
Proposition. Let\(X\) be a random variable with \(Var(X)<\infty\). Then for all \(\varepsilon>0\)\[ P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]
Proof. Without loss of generality, we may assume that \(E(X)=0\). Then \[ \varepsilon=E(\varepsilon - X)=E\{(\varepsilon - X)I_{X<\varepsilon}\}+E\{(\varepsilon - X)I_{X\ge \varepsilon}\}\le E\{(\varepsilon - X)I_{X< \varepsilon}\}.\] By Cauchy-Schwardz's inequality, We have\[ \varepsilon^2\le \left[E\{(\varepsilon - X)I_{X<\varepsilon}\}\right]^2\le E(\varepsilon + X)^2P(X<\varepsilon)=[\varepsilon^2+Var(X)][1-P(\ge\varepsilon)].\] Therefor,\[P(X\ge \varepsilon)\le\frac{Var(X)}{\varepsilon^2+Var(X)}.\]
Proof of the one side Kolmogorov type inequality. Let \(\Lambda=\{\max_{1\le j\le n}S_j \ge \varepsilon\}\) and \(\Lambda_k=\{\max_{1\le j <k}S_j < \varepsilon, S_k\ge\varepsilon\}\), then \(\Lambda =\bigcup_{k=1}^{n}\Lambda_k\). Without loss of generality, we assume that \(E(X_j)=0,j=1,\ldots,n.\) Then by the independence of the random variables,\[\begin{array}{rcl}\varepsilon&=&E[\varepsilon -S_n]=E[(\varepsilon-S_n)I_{\Lambda}]+[(\varepsilon-S_n)I_{\Lambda}^c]\\ &=&\sum_{k=1}^n[(\varepsilon-S_n)I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[\{(\varepsilon-S_k) -(S_n-S_k)\}I_{\Lambda_k}]+[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+\sum_{k=1}^n[E(S_n-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &=&\sum_{k=1}^n E[(\varepsilon-S_k)I_{\Lambda_k}]+E[(\varepsilon-S_n)I_{\Lambda^c}]\\ &\le&E[(\varepsilon-S_n)I_{\Lambda^c}].\end{array}\]
By Cauchy-Schwardz's inequality, we have
\[\varepsilon^2\le \{E[(\varepsilon-S_n)I_{\Lambda^c}]\}^2\le E[(\varepsilon-S_n)]^2 P(I_{\Lambda^c})=[\varepsilon^2+Var(S_n^2)][1-P(\Lambda)].\] Therefore,
\[ P\left(\max_{1\le j\le n}S_j\ge \varepsilon\right)\le\frac{Var(S_n)}{\varepsilon^2+Var(S_n)}\] as the inequality claimed.
Remark. The one side Kolmogorov type inequality is also true for martingale difference sequence as well as demimartingales, the proof is samilar.
On One Side Kolmogorov Type Inequalities的更多相关文章
- [家里蹲大学数学杂志]第432期Hardy type inequalities
If $p>1$, $f\geq 0$, and $$\bex F(x)=\int_0^x f(t)\rd t, \eex$$ then $$\bee\label{Hardy:0 to x} \ ...
- 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]
家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...
- salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type)
本篇引用以下三个链接: http://www.tgerm.com/2012/01/recordtype-specific-picklist-values.html?m=1 https://github ...
- AutoMapper:Unmapped members were found. Review the types and members below. Add a custom mapping expression, ignore, add a custom resolver, or modify the source/destination type
异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 应用场景:ViewModel==>Mode映射的时候出错 AutoMappe ...
- $.type 怎么精确判断对象类型的 --(源码学习2)
目标: var a = [1,2,3]; console.log(typeof a); //->object console.log($.type(a)); //->ar ...
- input type='file'上传控件假样式
采用bootstrap框架样式 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> &l ...
- mount报错: you must specify the filesystem type
在linux mount /dev/vdb 到 /home 分区时报错: # mount /dev/vdb /homemount: you must specify the filesystem ty ...
- error C4430:missing type specifier 解决错误
错误 3 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int ...
- The type javax.ws.rs.core.MediaType cannot be resolved. It is indirectly referenced from required .class files
看到了http://stackoverflow.com/questions/5547162/eclipse-error-indirectly-referenced-from-required-clas ...
随机推荐
- ueditor不自动加P解决方法
百度的Ueditor编辑器出于安全考虑; 用户在html模式下粘贴进去的html文档会自动被去除样式和转义. 虽然安全的,但是非常不方便. 做一下修改把这个功能去掉. 一.打开ueditor.all. ...
- discuz!安装遇到问题的解决方案
正常的安装步骤好多地方都有写过了,我安装的时候遇到问题百度翻了个遍也没有找到,现在问题已经解决了,发出了分享一下! 进入第三步创建数据库的时候提示:由于目标计算机积极拒绝,无法连接. 打开phpmya ...
- Unity3d 着色器语法(Shader)
Shader "name" { [Properties] Subshaders [Fallback] } 定义了一个着色器.着色器拥有一个 Properties 的列表.着色器包含 ...
- Slight difference between C++ and C
In C++, results of assignment operation, prefix increment and prefix decrement are all lvalues, the ...
- advanced validation on purchase.
安装模块 此模块在 标准功能的 2级审批基础上 增加 老板审批 增加 不同技术类和 非技术类的分支 核心审批工作流 如下图示 为审批用户 授予 purchase manager 权限 否则,看不到 审 ...
- 强大的Spring缓存技术(中)
好,到目前为止,我们的 spring cache 缓存程序已经运行成功了,但是还不完美,因为还缺少一个重要的缓存管理逻辑:清空缓存. 当账号数据发生变更,那么必须要清空某个缓存,另外还需要定期的清空所 ...
- C# abstract
Abstract: 1.用途:提供一个可供多个派生类共享的通用基类定义. 2.抽象类也可以定义抽象方法,方法是将关键字 abstract 添加到方法的返回类型的前面(抽象方法没有实现,所以方法定义后面 ...
- 升级到iOS9之后的相关适配
iOS9AdaptationTips(iOS9开发学习交流群:458884057) iOS9适配系列教程[中文在页面下方]转自@iOS程序犭袁 (截至2015年9月26日共有10篇,后续还将持续更新. ...
- JS-随机排序
var arr = [ 1,2,3,4,5,6,7,8 ];arr.sort(function ( a, b ) { return Math.random() - 0.5;});alert( a ...
- nodejs前端跨域访问
XMLHttpRequest cannot load http://localhost:3000/. No 'Access-Control-Allow-Origin' header is presen ...