嵊州D2T2 八月惊魂 全排列 next_permutation()
嵊州D2T2
八月惊魂
这是一个远古时期的秘密,至今已无人关心。
这个世界的每个时代可以和一个 1 ∼ n 的排列一一对应。
时代越早,所对应的排列字典序就越小。
我们知道,公爵已经是 m 个时代前的人物了。
并且通过翻阅古籍,我们得知了公爵所在时代所对应的排列。
那么我们的时代所对应的排列是什么?
希望以此能寻回我们失落的文明……
Input
第一行一个正整数 n。
第二行一个正整数 m。
第三行 n 个整数,表示公爵所在时代对应的排列。
Output 一行 n 个整数,表示我们所在的时代对应的排列。
Examples
| august.in | august.out |
|
5 3 1 2 3 4 5 |
1 2 4 5 3 |
Notes
对于所有数据,满足 n ≤ 10000 , m ≤ 100。
Task1[30%]
n ≤ 10
Task2[60%]
n ≤ 50
Task3[100%]
无特殊限制
Solve!
#include <cstdio>
#include <algorithm>
using namespace std;
int main(){
//freopen("august.in","r",stdin);
//freopen("august.out","w",stdout);
int n,m; scanf("%d%d",&n,&m);
int line[n];
for(int i=;i<n;i++) scanf("%d",&line[i]);
while(m--) next_permutation(line , line + n);
for(int i=;i<n;i++) {printf("%d ",line[i]);}
return ;
}
这篇博客园,之所以我要先code,是因为我连题目都看不懂
时代越早,所对应的排列字典序就越小。
是吗?字典序是什么呀~
还要一个一个推吗?怎么推?
于是我就搁着了。。。
后来
再看std(题解)
next_permutation(line , line + n);
这是什么函数呀?
原来是STL里面的呀。。。
真的没看过呀!!!o(╥﹏╥)o......

next_permutation全排列函数是一个十分好用而且强大的函数。
要想更好的了解这个函数可以看https://blog.csdn.net/howardemily/article/details/68064377
排列(Arrangement),简单讲是从N个不同元素中取出M个,按照一定顺序排成一列,通常用A(M,N)表示。
当M=N时,称为全排列(Permutation)。
从数学角度讲,全排列的个数A(N,N)=(N)*(N-1)*...*2*1=N!,但从编程角度,如何获取所有排列?那么就必须按照某种顺序逐个获得下一个排列,通常按照升序顺序(字典序)获得下一个排列。
例如对于一个集合A={1,2,3,},首先获取全排列a1: 1,2,3,;然后获取下一个排列a2: 1,3,2,;
按此顺序,A的全排列如下:
a1: 1,2,3; a2: 1,3,2; a3: 2,1,3; a4: 2,3,1; a5: 3,1,2; a6: 3,2,1; 共6种。
对于给定的任意一种全排列,如果能求出下一个全排列的情况,那么求得所有全排列情况就容易了。
好在STL中的algorithm已经给出了一种健壮、高效的方法,下面进行介绍。
next_permutation()
a)从后向前查找第一个相邻元素对(i,j),并且满足A[i] < A[j]。
易知,此时从j到end必然是降序。可以用反证法证明,请自行证明。
b)在[j,end)中寻找一个最小的k使其满足A[i]<A[k]。
由于[j,end)是降序的,所以必然存在一个k满足上面条件;并且可以从后向前查找第一个满足A[i]<A[k]关系的k,此时的k必是待找的k。
c)将i与k交换。
此时,i处变成比i大的最小元素,因为下一个全排列必须是与当前排列按照升序排序相邻的排列,故选择最小的元素替代i。
易知,交换后的[j,end)仍然满足降序排序。因为在(k,end)中必然小于i,在[j,k)中必然大于k,并且大于i。
d)逆置[j,end)
由于此时[j,end)是降序的,故将其逆置。最终获得下一全排序。
注意:如果在步骤a)找不到符合的相邻元素对,即此时i=begin,则说明当前[begin,end)为一个降序顺序,即无下一个全排列,STL的方法是将其逆置成升序。
next_permutation()拓展
如何获取所有全排列情况?
STL中的代码非常精妙,利用next_permutation的返回值,判断是否全排列结束(否则将死循环)。对于给定的一个数组,打印其所有全排列只需如下:
void all_permutation(int arr[], int n)
{
sort(arr,arr+n); // 先用sort排序
do{//用do……while保证至少做一遍
for(int i=; i<n; printf("%d ",arr[i++]));
printf("\n");
}while(next_permutation(arr,arr+n));//判断也是计算
}
All Permutation
请循其本
所以,我们的代码呢,只要一行(核心部分)呢!
#include <cstdio>
#include <algorithm>
using namespace std;
int main(){
//freopen("august.in","r",stdin);
//freopen("august.out","w",stdout);
int n,m; scanf("%d%d",&n,&m);
int line[n];
for(int i=;i<n;i++) scanf("%d",&line[i]);
while(m--) next_permutation(line , line + n);
for(int i=;i<n;i++) {printf("%d ",line[i]);}
return ;
}
别忘记加头文件哈!
#include <algorithm>
OK!
嵊州D2T2 八月惊魂 全排列 next_permutation()的更多相关文章
- 全排列next_permutation()用法和构造函数赋值
全排列next_permutation()用法 在头文件aglorithm里 就是1~n数组的现在的字典序到最大的字典序的依次增加.(最多可以是n!种情况) int a[n]; do{ }while( ...
- 关于全排列 next_permutation() 函数的用法
这是一个c++函数,包含在头文件<algorithm>里面,下面是基本格式. 1 int a[]; 2 do{ 3 4 }while(next_permutation(a,a+n)); 下 ...
- 全排列 ( next_permutation)
SLT: C++的STL有一个函数可以方便地生成全排列,这就是next_permutation 在C++ Reference中查看了一下next_permutation的函数声明: #include ...
- 全排列 next_permutation 用法
给一个正整数n,让你求它的全排列 先介绍一个函数,iota(a,a+n,1) 用法就是把a数组的第0位到第n-1位依次赋为1,2,.....n: 然后是next_permutation(a,a+4)函 ...
- 排列2(全排列next_permutation 注意格式)
排列2 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 蓝桥杯 方格填数 DFS 全排列 next_permutation用法
如下的10个格子(参看[图1.jpg]) 填入0~9的数字.要求:连续的两个数字不能相邻.(左右.上下.对角都算相邻) 一共有多少种可能的填数方案? 请填写表示方案数目的整数.注意:你提交的应该是一个 ...
- 全排列 next_permutation() 函数的用法
在头文件<algorithm>里面有如下代码: int a[]; do { } while(next_permutation(a,a+n)); 可产生1~n的全排列有如下代码: #incl ...
- 全排列 next_permutation() 函数的使用
看来看去还是这篇博客比较简洁明了 https://www.cnblogs.com/My-Sunshine/p/4985366.html 顺便给出牛客网的一道题,虽然这道题用dfs写出全排列也能做,题意 ...
- STL中关于全排列next_permutation以及prev_permutation的用法
这两个函数都包含在algorithm库中.STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation. 一.函数原型 首先我们来看看这两个函数 ...
随机推荐
- MEF 插件式开发 - 小试牛刀
原文:MEF 插件式开发 - 小试牛刀 目录 MEF 简介 实践出真知 面向接口编程 控制反转(IOC) 构建入门级 MEF 相关参考 MEF 简介 Managed Extensibility Fra ...
- 用友u8各版本在输出的时候报错提示:外部数据库驱动程序(1)中的意外错误
从10月12日起很多U8用户反馈,在各版本U8中输出报表时软件报错,报错内容“外部数据库驱动程序(1)中的意外错误”,经初步分析有以下解决方案:1.卸载微软的补丁:(1)如果是PC操作系统(一般是客户 ...
- 图像滤镜艺术--编码基础(Photoshop基础变换的代码实现)
原文:图像滤镜艺术--编码基础(Photoshop基础变换的代码实现) 自从上一篇博客写完之后,到现在已经有段时间了,这段时间不是不想接着写,只是想做的更好了在写出来给大家看呵呵. 今天,我将给大家介 ...
- 增加收入的 6 种方式(很多公司的模型是:一份时间卖多次。比如网易、腾讯。个人赚取收入的本质是:出售时间)good
个人赚取收入的本质是:出售时间.从这个角度出发,下面的公式可以描述个人收入: 个人收入 = 每天可售时间数量 * 单位时间价格 * 单位时间出售次数 在这个公式里,有三个要素: 每天可出售的时间数量 ...
- qml实现对SSL的支持(使用msys2,同时支持32和64位)超详细 good
首先准备环境.两种方法,使用mingw64 或者VS 直接放上下载地址https://sourceforge.net/projects/msys2/我下载的是msys2-x86_64-20161025 ...
- WCF nginx反向代理遇到的问题
正常配置了nginx反向代理,其他java站点什么的都正常,就wcf总是失败.始终会跑如下异常: 由于 AddressFilter 在 EndpointDispatcher 不匹配,To 为“http ...
- 高斯判别分析模型( Gaussian discriminant analysis)及Python实现
高斯判别分析模型( Gaussian discriminant analysis)及Python实现 http://www.cnblogs.com/sumai 1.模型 高斯判别分析模型是一种生成模型 ...
- Windows环境下使用Node.js
作者:短工邦技术部 - 陈文哲 Parse用的就是Node.js,所以我们要先了解什么是Node.js,以及做一些简单的操作. Node.js 的主要思路是:使用非阻塞的,事件驱动的 I/O 操作来保 ...
- Indy9的TIdFTPServer封装类
在Delphi 7开发下有强大的Indy控件,版本为9,要实现一个FTP服务器,参考自带的例子,发现还要写很多函数,而且不支持中文显示文件列表等等.于是,自己改进封装了下,形成一个TFTPServer ...
- 编译 Qt 5.6(使QtWebEngine支持XP)
说明 qt 5.6的编译进行了数十遍,才得出本文的可行方案,之所以花了这么多的时间,主要是qt引入了QtWebEngine模块后,导致编译难度直线上升,而且又有一些中国特色的问题(如360安全卫士)导 ...