D. Magic Gems

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Reziba has many magic gems. Each magic gem can be split into MM normal gems. The amount of space each magic (and normal) gem takes is 11 unit. A normal gem cannot be split.

Reziba wants to choose a set of magic gems and split some of them, so the total space occupied by the resulting set of gems is NN units. If a magic gem is chosen and split, it takes MM units of space (since it is split into MM gems); if a magic gem is not split, it takes 11 unit.

How many different configurations of the resulting set of gems can Reziba have, such that the total amount of space taken is NN units? Print the answer modulo 10000000071000000007 (109+7109+7). Two configurations are considered different if the number of magic gems Reziba takes to form them differs, or the indices of gems Reziba has to split differ.

Input

The input contains a single line consisting of 22 integers NN and MM (1≤N≤10181≤N≤1018, 2≤M≤1002≤M≤100).

Output

Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is NN units. Print the answer modulo 10000000071000000007 (109+7109+7).

Examples
input

Copy
4 2
output

Copy
5
input

Copy
3 2
output

Copy
3

In the first example each magic gem can split into 22 normal gems, and we know that the total amount of gems are 44.

Let 11 denote a magic gem, and 00 denote a normal gem.

The total configurations you can have is:

  • 11111111 (None of the gems split);
  • 00110011 (First magic gem splits into 22 normal gems);
  • 10011001 (Second magic gem splits into 22 normal gems);
  • 11001100 (Third magic gem splits into 22 normal gems);
  • 00000000 (First and second magic gems split into total 44 normal gems).

Hence, answer is 55.

题解:

  • 考虑 dpdp , f[i]f[i] 表示用 ii 个单位空间的方案数,答案即为 f[n]f[n].
  • 对于一个位置,我们可以放 MagicMagic 的,占 mm 空间,也可以放 NormalNormal 的,占 11 空间.
  • 转移方程即为 f[i]=f[i−1]+f[i−m]f[i]=f[i−1]+f[i−m] ,边界条件为 f[0]=f[1]=f[2]=…f[m−1]=1f[0]=f[1]=f[2]=…f[m−1]=1.
  • 直接转移是 O(n)O(n) 的,无法通过,需要矩阵优化.

也可以用杜教BM,求线性递推式;

参考代码:(矩阵快速幂)

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define Mod 1000000007
const double PI = acos(-1.0);
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const int N = + ;
struct Matrix {
ll n , m;
ll grid[N][N];
Matrix () { n = m = ; memset(grid , , sizeof(grid)); }
}; Matrix mul(Matrix a,Matrix b)
{
Matrix c;
c.n = a.n;c.m = b.m;
for(ll i=;i<=c.n;++i)
for(ll j=;j<=c.m;++j)
{
ll cnt = ;
for(ll k=;k<=a.m;++k)
{
c.grid[i][j] = (c.grid[i][j] + a.grid[i][k] * b.grid[k][j]);
cnt++;
if(cnt % == ) c.grid[i][j] %= Mod;
}
c.grid[i][j] %= Mod;
}
return c;
}
Matrix QuickMul(Matrix a ,ll k)
{
if(k == ) return a;
Matrix mid = QuickMul(a ,(k >> ));
if(k & ) return mul(mul(mid , mid),a);
else return mul(mid , mid);
}
ll n , m;
int main()
{
cin >> n >> m;
if(n < m) {return puts("") , ;}
if(n == m) return puts("") , ;
Matrix basic; basic.n = m; basic.m = ;
for(ll i=;i<=m;++i) basic.grid[i][] = (i == m) ? : ;//{1,1,1...1,m}T
Matrix base; base.n = base.m = m; for(ll i = ; i <= m - ; i++) base.grid[i][i + ] = ;
base.grid[m][] = base.grid[m][m] = ; Matrix ans = mul(QuickMul(base , n - m) , basic);
cout << ans.grid[m][] << endl;
return ;
}

杜教BM

 #include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=) { if(b&)res=res*a%mod; a=a*a%mod; } return res; }
ll _,n,m,dp[];
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,int k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]= (_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b)
{
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main()
{
scanf("%lld%lld",&n,&m);
vector<int> v;
for(int i=;i<m;++i) v.push_back();
for(ll i=;i<=m;++i) dp[i]=i+,v.push_back(dp[i]);
for(int i=m+;i<=;++i) dp[i]=dp[i-]+dp[i-m],v.push_back(dp[i]); printf("%lld\n",linear_seq::gao(v,n-)%mod);
return ;
}

CoderForces-Round60D(1117) Magic Gems的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  2. CF1117D Magic Gems

    CF1117D Magic Gems 考虑 \(dp\) , \(f[i]\) 表示用 \(i\) 个单位空间的方案数,答案即为 \(f[n]\). 对于一个位置,我们可以放 \(Magic\) 的, ...

  3. [递推+矩阵快速幂]Codeforces 1117D - Magic Gems

    传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...

  4. D. Magic Gems(矩阵快速幂 || 无敌杜教)

    https://codeforces.com/contest/1117/problem/D 题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间 ...

  5. Educational Codeforces Round 60 D. Magic Gems

    易得递推式为f[i]=f[i-1]+f[i-M] 最终答案即为f[N]. 由于N很大,用矩阵快速幂求解. code: #include<bits/stdc++.h> using names ...

  6. Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

    题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...

  7. eduCF#60 D. Magic Gems /// 矩阵快速幂

    题目大意: 给定n m (1≤N≤1e18, 2≤M≤100) 一个魔法水晶可以分裂成连续的m个普通水晶 求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7) input 4 ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) 题解

    Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...

  9. hdu 5727 Necklace dfs+二分图匹配

    Necklace/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5727 Description SJX has 2*N mag ...

随机推荐

  1. Win7安装pyenchant

    pip3 install pyenchant==1.6.6 单纯的 pip3 install pyenchant报错

  2. Tomcat开启关闭常见问题

    启动 bin/startup.bat ,双击运行该文件即可 访问:浏览器输入: http://localhost:8080 回车访问自己 http://别人的ip:8080 访问别人 可能出现的问题: ...

  3. Golang stackError 补充go错误定位能力

    用过go的都知道,go的error实现很简单,errors.New实现的error类并不存储堆栈数据,这导致一个问题,就是多次error return后,或panic后recover了,找不到触发异常 ...

  4. linux系统LNMP环境部署

    源码安装 nginx# yum -y install gcc openssl-devel# useradd -s /sbin/nologin nginx# tar xf nginx-1.14.0.ta ...

  5. Python 常用模块系列学习(1)--random模块常用function总结--简单应用--验证码生成

    random模块--random是一个生成器 首先: import random    #导入模块 print (help(random))    #打印random模块帮助信息 常用function ...

  6. 【dp】 AreYouBusy

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3535 题意: 多组背包, 0类型为为至少去1样, 1为至多取1样, 2 为随意. 如果将2类型 再添加 ...

  7. HttpClient在高并发场景下的优化实战

    在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也. ...

  8. think PHP 查询、更改

    最近公司没有什么新项目,故准备搞搞PHP,正好后端有一些小东西需要搞一下,我就来试试吧. PHP 基于think PHP 3 实现功能: 1.为销售绑定虚拟号码分组(查询可以绑定的分组 -> 绑 ...

  9. Mybaits学习总结

    一.Mybatis介绍 邮箱:1727292697 MyBatis是一个支持普通SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis消除了几乎所有的JDBC代码和参数的手工设置以及对结果集的 ...

  10. 关于.ssh目录下的known_hosts文件的补充

    一.关于.ssh目录下的known_hosts文件的补充 其实一开始是没有注意到的,按照网上的教程一步一步操作,并没有注意到这个文件的生成.直到有一次我试着去查询.ssh目录是否存在时,出现了下面的情 ...