CoderForces-Round60D(1117) Magic Gems
D. Magic Gems
3 seconds
256 megabytes
standard input
standard output
Reziba has many magic gems. Each magic gem can be split into MM normal gems. The amount of space each magic (and normal) gem takes is 11 unit. A normal gem cannot be split.
Reziba wants to choose a set of magic gems and split some of them, so the total space occupied by the resulting set of gems is NN units. If a magic gem is chosen and split, it takes MM units of space (since it is split into MM gems); if a magic gem is not split, it takes 11 unit.
How many different configurations of the resulting set of gems can Reziba have, such that the total amount of space taken is NN units? Print the answer modulo 10000000071000000007 (109+7109+7). Two configurations are considered different if the number of magic gems Reziba takes to form them differs, or the indices of gems Reziba has to split differ.
The input contains a single line consisting of 22 integers NN and MM (1≤N≤10181≤N≤1018, 2≤M≤1002≤M≤100).
Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is NN units. Print the answer modulo 10000000071000000007 (109+7109+7).
4 2
5
3 2
3
In the first example each magic gem can split into 22 normal gems, and we know that the total amount of gems are 44.
Let 11 denote a magic gem, and 00 denote a normal gem.
The total configurations you can have is:
- 11111111 (None of the gems split);
- 00110011 (First magic gem splits into 22 normal gems);
- 10011001 (Second magic gem splits into 22 normal gems);
- 11001100 (Third magic gem splits into 22 normal gems);
- 00000000 (First and second magic gems split into total 44 normal gems).
Hence, answer is 55.
题解:
- 考虑 dpdp , f[i]f[i] 表示用 ii 个单位空间的方案数,答案即为 f[n]f[n].
- 对于一个位置,我们可以放 MagicMagic 的,占 mm 空间,也可以放 NormalNormal 的,占 11 空间.
- 转移方程即为 f[i]=f[i−1]+f[i−m]f[i]=f[i−1]+f[i−m] ,边界条件为 f[0]=f[1]=f[2]=…f[m−1]=1f[0]=f[1]=f[2]=…f[m−1]=1.
- 直接转移是 O(n)O(n) 的,无法通过,需要矩阵优化.

也可以用杜教BM,求线性递推式;
参考代码:(矩阵快速幂)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define Mod 1000000007
const double PI = acos(-1.0);
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const int N = + ;
struct Matrix {
ll n , m;
ll grid[N][N];
Matrix () { n = m = ; memset(grid , , sizeof(grid)); }
}; Matrix mul(Matrix a,Matrix b)
{
Matrix c;
c.n = a.n;c.m = b.m;
for(ll i=;i<=c.n;++i)
for(ll j=;j<=c.m;++j)
{
ll cnt = ;
for(ll k=;k<=a.m;++k)
{
c.grid[i][j] = (c.grid[i][j] + a.grid[i][k] * b.grid[k][j]);
cnt++;
if(cnt % == ) c.grid[i][j] %= Mod;
}
c.grid[i][j] %= Mod;
}
return c;
}
Matrix QuickMul(Matrix a ,ll k)
{
if(k == ) return a;
Matrix mid = QuickMul(a ,(k >> ));
if(k & ) return mul(mul(mid , mid),a);
else return mul(mid , mid);
}
ll n , m;
int main()
{
cin >> n >> m;
if(n < m) {return puts("") , ;}
if(n == m) return puts("") , ;
Matrix basic; basic.n = m; basic.m = ;
for(ll i=;i<=m;++i) basic.grid[i][] = (i == m) ? : ;//{1,1,1...1,m}T
Matrix base; base.n = base.m = m; for(ll i = ; i <= m - ; i++) base.grid[i][i + ] = ;
base.grid[m][] = base.grid[m][m] = ; Matrix ans = mul(QuickMul(base , n - m) , basic);
cout << ans.grid[m][] << endl;
return ;
}
杜教BM
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=) { if(b&)res=res*a%mod; a=a*a%mod; } return res; }
ll _,n,m,dp[];
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,int k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]= (_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b)
{
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main()
{
scanf("%lld%lld",&n,&m);
vector<int> v;
for(int i=;i<m;++i) v.push_back();
for(ll i=;i<=m;++i) dp[i]=i+,v.push_back(dp[i]);
for(int i=m+;i<=;++i) dp[i]=dp[i-]+dp[i-m],v.push_back(dp[i]); printf("%lld\n",linear_seq::gao(v,n-)%mod);
return ;
}
CoderForces-Round60D(1117) Magic Gems的更多相关文章
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- CF1117D Magic Gems
CF1117D Magic Gems 考虑 \(dp\) , \(f[i]\) 表示用 \(i\) 个单位空间的方案数,答案即为 \(f[n]\). 对于一个位置,我们可以放 \(Magic\) 的, ...
- [递推+矩阵快速幂]Codeforces 1117D - Magic Gems
传送门:Educational Codeforces Round 60 – D 题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...
- D. Magic Gems(矩阵快速幂 || 无敌杜教)
https://codeforces.com/contest/1117/problem/D 题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间 ...
- Educational Codeforces Round 60 D. Magic Gems
易得递推式为f[i]=f[i-1]+f[i-M] 最终答案即为f[N]. 由于N很大,用矩阵快速幂求解. code: #include<bits/stdc++.h> using names ...
- Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)
题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...
- eduCF#60 D. Magic Gems /// 矩阵快速幂
题目大意: 给定n m (1≤N≤1e18, 2≤M≤100) 一个魔法水晶可以分裂成连续的m个普通水晶 求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7) input 4 ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
- hdu 5727 Necklace dfs+二分图匹配
Necklace/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5727 Description SJX has 2*N mag ...
随机推荐
- MySQL原生PHP操作-天龙八步
<?php //1.第一步[建立连接] $conn = mysqli_connect('localhost','root','123456') or die('数据库连接失败!'); //2.第 ...
- 致和我一样迷茫的Java程序员们
缘起 从事近7年Java开发之后,在2019年这个寒冷的冬天里,我终于迎来了人生中的第一次裁员. 啊,30岁之后的裁员真让人焦虑. 按照以往惯例,在面试心仪的公司之前,需要先面试一些不那么心仪的公司热 ...
- Kickstart Round H 2019 Problem B. Diagonal Puzzle
有史以来打得最差的一次kickstart竟然发生在winter camp出结果前的最后一次ks = = 感觉自己的winter camp要凉了 究其原因,无非自己太眼高手低,好好做B, C的小数据,也 ...
- 一文看懂 K8s 日志系统设计和实践
上一篇中我们介绍了为什么需要一个日志系统.为什么云原生下的日志系统如此重要以及云原生下日志系统的建设难点,相信DevOps.SRE.运维等同学看了是深有体会的.本篇文章单刀直入,会直接跟大家分享一下如 ...
- nyoj 26-孪生素数问题(打表)
26-孪生素数问题 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:10 submit:43 题目描述: 写一个程序,找出给出素数范围内的所有孪生素数 ...
- ReentreantLock:重入锁
ReentreantLock:重入锁 参考:https://www.cnblogs.com/nullzx/p/4968674.html 一). ReentrantLock与synchronized的区 ...
- vue-cli从2升级到3报错error 404 Not Found: @wry/context@^0.4.0
vue3出来了,想尝尝鲜. 于是按官方的方法卸载2安装3. npm uninstall vue-cli -g npm install -g @vue/cli 但是报错了 error 404 Not F ...
- PostGIS 递归方法
在Oracle数据库中,有可以实现递归的函数 select * from table_name start with [condition1] connect by [condition2] 最近发现 ...
- 树莓派SSH篇
开启好树莓派后发现一个问题,怎么才可以输入进树莓派里面呢? 一.你需要和我一样准备一个无线(有线)键盘
- JavaScript笔记八
1.原型(prototype) - 创建一个函数以后,解析器都会默认在函数中添加一个数prototype prototype属性指向的是一个对象,这个对象我们称为原型对象. - 当函数作为构造函数使用 ...