https://acm.ecnu.edu.cn/contest/140/problem/D/

题意

  求一个区间L,R中,在K进制表示下末尾恰有m个0的数字个数。

思路

  末尾有m个0,就表示的是K^m的倍数,基本容斥,就是ans = X / (K ^m ) - X / (K ^(m+1));

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/ ll solve(int k,int m,ll x){
ll a = x, b = x;
for(int i=; i<=m; i++){
a = a / k;
b = b / k;
}
b = b / k; return a - b;
}
int main(){
int T;
scanf("%d", &T);
while(T--){
ll l,r; int k,m;
cin>>l>>r>>k>>m;
cout<<solve(k,m,r) - solve(k,m,l-)<<endl;
} return ;
}

EOJ 2019.2月赛 D. 进制转换的更多相关文章

  1. EOJ Monthly 2019.2 (based on February Selection) D 进制转换 【数学 进制转换】

    任意门:https://acm.ecnu.edu.cn/contest/140/problem/D/ D. 进制转换 单测试点时限: 2.0 秒 内存限制: 256 MB “他觉得一个人奋斗更轻松自在 ...

  2. EOJ Monthly 2019.11 A(进制转换)

    "欢迎您乘坐东方航空公司航班 MU5692 由银川前往上海......" "我们的飞机很快就要起飞了,请收起小桌板,摘下耳机......" 收起了小桌板,摘下了 ...

  3. 颜色转换、随机、16进制转换、HSV

    颜色转换.随机.16进制转换.HSV: /** * * *-----------------------------------------* * | *** 颜色转换.随机.16进制转换.HSV * ...

  4. SQL Server 进制转换函数

    一.背景 前段时间群里的朋友问了一个问题:“在查询时增加一个递增序列,如:0x00000001,即每一个都是36进位(0—9,A--Z),0x0000000Z后面将是0x00000010,生成一个像下 ...

  5. [No000071]C# 进制转换(二进制、十六进制、十进制互转)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. JS中的进制转换以及作用

    js的进制转换, 分为2进制,8进制,10进制,16进制之间的相互转换, 我们直接利用 对象.toString()即可实现: //10进制转为16进制 ().toString() // =>&q ...

  7. 结合stack数据结构,实现不同进制转换的算法

    #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving with Algorithms and Da ...

  8. 进制转换( C++字符数组 )

    注: 较为简便的方法是用 整型(int)或浮点型(long.double 注意:该类型不一定能够准确存储数据) 来存放待转换的数值,可直接取余得到每一位数值 较为稳定的方法是用 字符数组储存待转换的数 ...

  9. JS 进制转换

    十进制转换成其他进制 objectname.toString([radix])   objectname 必选项.要得到字符串表示的对象. radix 可选项.指定将数字值转换为字符串时的进制. 例如 ...

随机推荐

  1. 常用服务部署脚本(nodejs,pyenv,go,redis,)

    根据工作总结的常用安装脚本,要求linux-64系统 #!/bin/bash path=/usr/local/src node () { cd $path #wget https://nodejs.o ...

  2. codeforces 339 D.Xenia and Bit Operations(线段树)

    这个题目属于线段树的点更新区间查询,而且查的是整个区间,其实不用写query()函数,只需要输出根节点保存的值就可以了. 题意: 输入n,m表示有2^n个数和m个更新,每次更新只把p位置的值改成b,然 ...

  3. 给最近正在找工作(iOS)的朋友一些建议/经验

    众所周知, iOS开发找工作越来越难, 企业要求越来越高,一方面是资本寒冬期+七八月是企业招人淡季, 另外一方面也是iOS市场饱和.最近有出去看新机会, 所以下面记录一下面试XimalayaFM的大概 ...

  4. Liunx C 编程之多线程与Socket

    多线程 pthread.h是linux特有的头文件,POSIX线程(POSIX threads),简称Pthreads,是线程的POSIX标准.该标准定义了创建和操纵线程的一整套API.在类Unix操 ...

  5. 第十章 Centos7-系统进程管理 随堂笔记

    第十章 Centos7-系统进程管理 本节所讲内容: 10.1 进程概述和ps查看进程工具 10.2 uptime查看系统负载-top动态管理进程 10.3 前后台进程切换- nice进程优先级-实战 ...

  6. 深入剖析 RabbitMQ —— Spring 框架下实现 AMQP 高级消息队列协议

    前言 消息队列在现今数据量超大,并发量超高的系统中是十分常用的.本文将会对现时最常用到的几款消息队列框架 ActiveMQ.RabbitMQ.Kafka 进行分析对比.详细介绍 RabbitMQ 在 ...

  7. mybatis学习的终极宝典

    **********************************************************************************************一:myba ...

  8. powerdesign进军(二)--oracle数据源配置

    目录 资源下载(oracle客户端) 配置 查看系统的数据源 powerdesign 连接数据库 title: powerdesign进军(二)--oracle数据源配置 date: 2019-05- ...

  9. (二十四)c#Winform自定义控件-单标题窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  10. Spring Boot 统一异常这样处理和剖析,安否?

    话说异常 「欲渡黄河冰塞川,将登太行雪满天」,无论生活还是计算机世界难免发生异常,上一篇文章RESTful API 返回统一JSON数据格式 说明了统一返回的处理,这是请求一切正常的情形:这篇文章将说 ...