题意

有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点。

思路

(一)
首先先缩点。自己在缩点再建图中犯了错误,少连接了大点到其他点的边。
跑两次最长路,一次以1为起点,一次以1为终点(跑一遍反图)
然后枚举边,判断可否形成一个环。
(二)
分层图的思想
以为只有一次逆向的机会,可以建两层图,第一层向第二层连翻转的情况。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = 1e5+;
vector<int>mp1[maxn],mp2[][maxn];
int dfn[maxn],low[maxn],vis[maxn],gtot,nn,dp[maxn];
int col[maxn],vv[maxn];
stack<int>st; void tarjan(int u){
dfn[u] = low[u] = ++gtot;
st.push(u); vis[u] = ;
for(int i=; i<mp1[u].size(); i++){
int v = mp1[u][i];
if(dfn[v] == ) {
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(vis[v]){
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]){
int x;nn++;
while(!st.empty()){
int x = st.top(); st.pop();
col[x] = nn;
vis[x] = ;
dp[nn]++;
if(x == u) break;
}
}
}
int ans = ;
int dis[maxn][];
pii edge[maxn];
void dji(int s,int id){
priority_queue<pii>que; dis[s][id] = dp[s];
que.push(pii(dis[s][id], s));
while(!que.empty()){
int u = que.top().se; que.pop(); for(int i=; i<mp2[id][u].size(); i++) {
int v = mp2[id][u][i],w = dp[v]; if(dis[v][id] < dis[u][id] + w){
dis[v][id] = dis[u][id] + w;
que.push(pii(dis[v][id], v));
}
}
}
}
int main(){
int n,m;
scanf("%d%d", &n, &m);
rep(i, , m) {
int x,y; scanf("%d%d", &x, &y);
mp1[x].pb(y);
edge[i] = pii(x, y);
}
for(int i=; i<=n; i++)
if(!dfn[i])tarjan(i); int s = col[];
int pp = ;
memset(vis, , sizeof(vis));
for(int i=; i<=n; i++){
int u = col[i];
if(u == ) continue; for(int j=; j<mp1[i].size(); j++){
int v = col[mp1[i][j]];
if(v == || u == v) continue; mp2[][u].pb(v);
mp2[][v].pb(u);
}
}
dji(s, ); dji(s, ); int ans = dp[s];
for(int i=; i<=m; i++){
int u = col[edge[i].fi],v = col[edge[i].se];
if(dis[v][] && dis[u][])ans = max(ans, dis[v][] + dis[u][] - dp[s]);
} printf("%d\n", ans);
return ;
}

P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  2. [USACO15JAN]草鉴定Grass Cownoisseur (分层图,最长路,$Tarjan$)

    题目链接 Solution 水水的套路题. 可以考虑到一个环内的点是可以都到达的,所以 \(tajan\) 求出一个 \(DAG\) . 然后 \(DAG\) 上的点权值就是 \(scc\) 的大小. ...

  3. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  5. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  6. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  7. [Luogu P3119] [USACO15JAN]草鉴定Grass Cownoisseur (缩点+图上DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3119 Solution 这题显然要先把缩点做了. 然后我们就可以考虑如何处理走反向边的问题. 像我这样的 ...

  8. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. Nginx服务器安全加固tips整理

    公司各业务网站大多用到Nginx,花了点时间整理了一下Nginx服务器安全加固的各类tips. 默认配置文件和Nginx端口 /usr/local/nginx/conf/-Nginx配置文件目录,/u ...

  2. springBoot数据校验与统一异常处理

    概念 异常,在程序中经常发生,如果发生异常怎样给用户一个良好的反馈体验就是我们需要处理的问题.以前处理异常信息,经常都是给前端一个统一的响应,如数据错误,程序崩溃等等.没办法指出哪里出错了,这是一种对 ...

  3. c#小灶——初识c#

    提到c#,就不得不说.net,.net是微软开发的一个平台,简单来说,在这个平台上,可以编写.运行程序.可能很多人觉得这个平台离我们很遥远,其实不然,这个平台就一直在我们的windows操作系统里,默 ...

  4. 自定义SWT控件七之自定义Shell(可伸缩窗口)

    7.可伸缩窗口 该自定义窗口可以通过鼠标随意更改窗口大小 package com.hikvision.encapsulate.view.control.shell; import org.eclips ...

  5. LASSO原作者的论文,来读读看

    Regression Shrinkage and Selection via the lasso 众所周知,Robert Tibshirani是统计领域的大佬,这篇文章在1996年提出了LASSO,之 ...

  6. HelloDjango 系列教程:Django 的接客之道

    文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 Web 服务简单的说就是处理请求,每个请求就像是一个"顾客".首先热情地把顾客迎接进来,然后满足用户的个性 ...

  7. Spring注解浅入浅出——不吹牛逼不装逼

    Spring注解浅入浅出——不吹牛逼不装逼 前情提要 上文书咱们说了<Spring浅入浅出>,对Spring的核心思想看过上篇的朋友应该已经掌握了,此篇用上篇铺垫,引入注解,继续深入学习. ...

  8. 【错误】【vscode】输出中文是乱码问题

  9. 【Java例题】8.2 手工编写字符串统计的可视化程序

      2. 手工编写字符串统计的可视化程序. 一个Frame窗体容器,布局为null,两个TextField组件,一个Button组件. Button组件上添加ActionEvent事件监听器Actio ...

  10. idea中的springboot项目如何不用重新编译,自动热部署

    两步走:引入依赖,配置idea 在pom.xml中引入如下依赖,关键字:devtools 第二步,修改idea两处配置 2.1 windows下,ctl+alt+s打开idea配置菜单 左上角输入框搜 ...