2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)
2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)
Problem A. Manhattan
solved by RDC 32 min 1Y
题意 给一网格图,找出欧几里得距离为 d 的两点,最大化最短路。
第一回合
三分搜索,第一个点的坐标 \((x,0)(0\leq x<1)\),确定第一个点后,对第二个点的横坐标或者纵坐标进行枚举计算答案。
第二回合
设最优解两点之间,横坐标差绝对值为 \(dx\) 纵坐标差绝对值为 \(dy\),分类讨论。
- 当 \(dx\) 为整数时,枚举 \(dx\),有 \(dy=\sqrt{d^2-dx^2}\)。
- 当 \(dy\) 为整数时,枚举 \(dy\)。
- 否则,猜测答案为 \(\sqrt{2}d\),两点斜率绝对值为 1。(距离为 \(d\) 的两点曼哈顿距离最大值为 \(\sqrt{2}d\))
第三回合
- 注意到,若 \(min(dx,dy)\geq 1\) 或者 \(dx,dy\) 皆不为整数,两点间最短路即曼哈顿距离。
- 当两点间最短距离不是曼哈顿距离时,\(0 \leq min(dx,dy)<1\),且 \(dx,dy\) 中存在正整数。
Problem C. Clique Coloring
solved by RDC 112 min 1Y
题意 求极小的 m,使得可以选出大小分别为 \(a_1,a_2,...,a_n\) 的子集,使得两两交大小小于等于 1.
做法
- 注意到任意两个集合的交,小于等于 1.
- 元素按,是否归属于 \(1,2,...,n\) 号集合,可以划分成 \(2^n\) 个等价类,编号分别为 \(0\)~\(2^n-1\)
- DFS 枚举编号 \(bitcount()\) 大于 1 的等价类中是否有元素,剪掉一些 invalid 的枚举(若 \(bitcount(x\&y) \geq 2\),那么第 x 个等价类,第 y 个等价类,不可同时有元素)。
- 合法的枚举方案很少 \((<1e5)\),对每种方案统计答案即可。
Problem B. Dictionary
upsolved by RDC,sdcgvhgj,F0_0H
题意 给 n 个串,字符集为小写字母,替换 '?',使字典序单增。
做法1 考虑 DP
- \(f[l][r][p][c]\) 表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[x] [p]=c(l \leq x \leq r)\) 的方案数。
- \(g[l][r][p][c]\) 表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[l] [p]=c\) 的方案数。
- \(g[21][i][i]['\0']=f[21][i][i]['\0']=1(1\leq i\leq n)\)
- \(f[l][r][p][c]=\sum_{ch}g[l][r][p+1][c]*[condition]\),其中 \([condition]\) 表示 \(s[x][p](l\leq x\leq r)\) 能否全为字符 \(c\).
- \(g[l][r][p][c]=\sum_{ch>c}\sum_{mid}f[l][mid][p][c]*((mid+1<=r)?g[mid+1][r][p][ch]:1)\)
- 对 \(g[l][r][p][]\) 做后缀和,优化。
code
做法2 对上述状态转移的简化
- \(f[l][r][p][c]\)表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[x] [p]\leq c(l \leq x \leq r)\) 的方案数。
- \(f[l][r][p][c]=\sum_{ch<c}\sum_{mid}f[l][mid][p][ch]*f[mid+1][r][p+1]['z']*[condition]\),其中\([condition]\)表示\(s[x][p](mid+1\leq x\leq r)\)能否全为字符\(c+1\)
code
Problem D. Dense Amidakuji
upsolved by F0_0H
题意 排骨龙沿着竹竿往下爬,输出会从哪个竹竿落下。
做法
考虑两个如下事实:
- 对于每条横边,定会被经过两次,一次从左往右,一次从右往左
- 每删除一条横边,相当于交换该横边左右两次经过的状态
所以只需要考虑每条横边原始被经过的标号,交换一下即可(从上到下考虑)
code
Problem G. Snake
upsolved by sdcgvhgj
题意 给一条折线段\(P_1P_2,.....P_n\),问能否穿过一个洞。
口胡 by rdc
- 能穿过洞,等价于折线段在任意位置都能被直线划分成两段。
- 若在位置 \(Q\) 能被划分成两段,那么必存在 \(1\leq i \leq n\),使得 \(QP_i\) 能把折线段划分成两段。
- 枚举点 \(P_i\),更新点集 \(\{Q|P_iQ 能划分折线段\}\)。
- 有解,等价于,\(\cup_{i=1}^{n} \{Q|P_iQ 能划分折线段\} = 折线段上点组成点集\)。
Problem J. Hyperrectangle
题意 输入 \(d\) 维长方体,求 \(x_1+x_2+..+x_d\leq s\) 体积。
2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)的更多相关文章
- 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables
题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...
- 【BFS】【最小生成树】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem G. We Need More Managers!
题意:给你n个点,点带权,任意两点之间的边权是它们的点权的异或值中“1”的个数,问你该图的最小生成树. 看似是个完全图,实际上有很多边是废的.类似……卡诺图的思想?从读入的点出发BFS,每次只到改变它 ...
- 【状压dp】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem E. Guessing Game
题意:给你n个两两不同的零一串,Alice在其中选定一个,Bob去猜,每次询问某一位是0 or 1.问你最坏情况下最少要猜几次. f(22...2)表示当前状态的最小步数,2表示这位没确定,1表示确定 ...
- 【推导】【单调性】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem B. Tribute
题意:有n个数,除了空集外,它们会形成2^n-1个子集,给你这些子集的和的结果,让你还原原来的n个数. 假设原数是3 5 16, 那么它们形成3 5 8 16 19 21 24, 那么第一轮取出开头的 ...
- 【线性基】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem A. XOR
题意:给你一些数,问你是否能够将它们划分成两个集合,使得这两个集合的异或和之差的绝对值最小. 设所有数的异或和为S,集合A的异或和为A. 首先,S的0的位对答案不造成影响. S的最高位1,所对应的A的 ...
- 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory
让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...
- 【动态规划】【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem B. Dissertation
题意: 给定S1串,长度100w,S2串,长度1k.问它俩的LCS. f(i,j)表示S2串前i个字符,LCS为j时,最少需要的S1串的前缀长度.转移的时候,枚举下一个字符在S1的位置即可.(可以预处 ...
- 【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem A. The Catcher in the Rye
一个区域,垂直分成三块,每块有一个速度限制,问你从左下角跑到右上角的最短时间. 将区域看作三块折射率不同的介质,可以证明,按照光路跑时间最短. 于是可以二分第一个入射角,此时可以推出射到最右侧边界上的 ...
- 2015 UESTC Winter Training #7【2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest】
2015 UESTC Winter Training #7 2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest 据 ...
随机推荐
- poj 3714 寻找最近点对
参考自<编程之美>169页,大概原理就是把区间分成两部分,然后递归找每一部分中最近的点对,还有一种情况就是这个点对分属于这两部分,然后选两部分中的部分点枚举即可,取其最小值. //2013 ...
- WPF控件截图
//截图 RenderTargetBitmap RenderVisaulToBitmap(Visual vsual, int width, int height) { ...
- 简易数据分析 09 | Web Scraper 自动控制抓取数量 & Web Scraper 父子选择器
这是简易数据分析系列的第 9 篇文章. 今天我们说说 Web Scraper 的一些小功能:自动控制 Web Scraper 抓取数量和 Web Scraper 的父子选择器. 如何只抓取前 100 ...
- SpringMVC学习笔记之---深入使用
SpringMVC深入使用 (一)基于XML配置的使用 (1)配置 1.SpringMVC基础配置 2.XML配置Controller,HandlerMapping组件映射 3.XML配置ViewRe ...
- 编码规范 | Java函数优雅之道(下)
上文背景 本文总结了一套与Java函数相关的编码规则,旨在给广大Java程序员一些编码建议,有助于大家编写出更优雅.更高质.更高效的代码. 内部函数参数尽量使用基础类型 案例一:内部函数参数尽量使用基 ...
- ZooKeeper实现同步屏障(Barrier)
按照维基百科的解释:同步屏障(Barrier)是并行计算中的一种同步方法.对于一群进程或线程,程序中的一个同步屏障意味着任何线程/进程执行到此后必须等待,直到所有线程/进程都到达此点才可继续执行下文. ...
- 8.12 day31 进程间通信 Queue队列使用 生产者消费者模型 线程理论 创建及对象属性方法 线程互斥锁 守护线程
进程补充 进程通信 要想实现进程间通信,可以用管道或者队列 队列比管道更好用(队列自带管道和锁) 管道和队列的共同特点:数据只有一份,取完就没了 无法重复获取用一份数据 队列特点:先进先出 堆栈特点: ...
- size命令的sysv和berkeley格式差别
size命令使用说明 size命令用于显示二进制文件的段(节)大小,其功能类似于readelf -S,详细的说明如下: 用法:size [选项] [文件] 显示二进制文件中节的大小 没有给出输入文件, ...
- java 正则 替换中文为空
//中文替换为"" public String replaceChineseToNULL(String s){ String reg = "[\u4e00-\u9fa5] ...
- 打造适用于c#的feign
之前因为工作原因使用spring cloud全家桶开发过若干项目,发现其中的feign非常好用,以前开发接口客户端的时候都是重复使用HttpClient实现业务,每次新增接口都十分繁琐,故萌生了自定义 ...