Halloween treats

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1097    Accepted Submission(s): 435
Special Judge

Problem Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

 
Input
The input contains several test cases. 
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

 
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet, print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
 
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
 
Sample Output
3 5
2 3 4
 
Source
 
Recommend
linle   |   We have carefully selected several similar problems for you:  1802 1807 1806 1804 1801 
 
鸽巢原理的意思是一定存在一个连续的区间,满足题目要求(是n的倍数)
所以我们只需要求一段连续区间的和是否是n的倍数
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
ll vis[maxn], a[maxn];
int main() {
std::ios::sync_with_stdio(false);
ll n, m;
while( cin >> n >> m ) {
if( !n && !m ) {
break;
}
ll sum = 0, t;
memset( vis, 0, sizeof(vis) );
for( ll i = 1; i <= m; i ++ ) {
cin >> a[i];
}
for( ll i = 1; i <= m; i ++ ) {
sum += a[i];
t = sum%n;
if( t == 0 ) {
for( ll j = 1; j < i; j ++ ) {
cout << j << " ";
}
cout << i << endl;
break;
} else if( vis[t] ) { //如果余数在前面出现过,现在又出现了,则中间一定加了n的倍数
for( ll j = vis[t]+1; j < i; j ++ ) {
cout << j << " ";
}
cout << i << endl;
break;
}
vis[t] = i;
}
}
return 0;
}

  

Halloween treats HDU 1808 鸽巢(抽屉)原理的更多相关文章

  1. [POJ3370]&[HDU1808]Halloween treats 题解(鸽巢原理)

    [POJ3370]&[HDU1808]Halloween treats Description -Every year there is the same problem at Hallowe ...

  2. HDU 1205 鸽巢原理

    #include <bits/stdc++.h> using namespace std; long long abs_(long long a,long long b) { if(a&g ...

  3. HDU 5776 sum(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=5776 Problem Description Given a sequence, you're ask ...

  4. hdu 1205 吃糖果 (抽屉原理<鸽笼原理>)

    吃糖果Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submissi ...

  5. HDU 1808 Halloween treats(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=1808 Problem Description Every year there is the same ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ3370&amp;HDU1808 Halloween treats【鸽巢原理】

    题目链接: id=3370">http://poj.org/problem?id=3370 http://acm.hdu.edu.cn/showproblem.php?pid=1808 ...

  8. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  9. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

随机推荐

  1. Linux内核OOM killer机制

    程序运行了一段时间,有个进程挂掉了,正常情况下进程不会主动挂掉,简单分析后认为可能是运行时某段时间内存占用过大,系统内存不足导致触发了Linux操作系统OOM killer机制,将运行中的进程杀掉了. ...

  2. ue4使用SceneCapture2D创建小地图示例 蓝图

    做C++项目的时候遇到了一个小地图的问题,从网上找了个蓝图的思路,转载一下. 原文:https://www.engineworld.cn/thread-3835-1-1.html 本文使用ue4提供的 ...

  3. dubbo负载均衡是如何实现的?

    dubbo的负载均衡全部由AbstractLoadBalance的子类来实现 RandomLoadBalance 随机 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀 ...

  4. Web前端开发——Ionic 3.0【爱创课堂专业前端培训】

    前端开发——Ionic 3.0 一.Ionic 移动端有三种开发方向 源生APP开发, 移动端web开发 混合开发(介于以上两者之间的) 类微信小程序 reactNative,用react语法,开发a ...

  5. apicloud 开发环境搭建

     之前做过appcan 手机应用的开发,工作需要切换的apicloud , 开发环境的的搭建是开发的第一步,let's go 1新建应用 step1  注册账号 注册apicloud 账号:https ...

  6. [转载]ActiveMQ实现负载均衡+高可用部署方案

    转载于 http://www.open-open.com/lib/view/open1400126457817.html 一.架构和技术介绍 1.简介 ActiveMQ 是Apache出品,最流行的, ...

  7. Java源码之ConcurrentHashMap

    ⑴背景 ConcurrentHashMap是线程安全高效的HashMap.而HashMap在多线程情况下强行使用HashMap的put方法可能会导致程序死循环,使CPU使用率达到100%.(http: ...

  8. mybatis批量更新策略

    我们知道循环中操作db会导致连接数满,严重影响数据库性能.所以在对db进行DQL与DML时,根据业务逻辑尽量批量操作,这里我们介绍下使用mybatis批量更新mysql的两种方式. 方式一: < ...

  9. 偏差和方差以及偏差方差权衡(Bias Variance Trade off)

    当我们在机器学习领域进行模型训练时,出现的误差是如何分类的? 我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance): 这是一张常见的靶心图 可以看左下角的这一张图,如果我们的目标是 ...

  10. File Compression and Archiving in linux (linux 中文件的归档)

    1. Compressing Files at the Shell Prompt Red Hat Enterprise Linux provides the bzip2, gzip, and zip ...