链接:https://www.nowcoder.com/acm/contest/181/C
来源:牛客网

题目描述

小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行。
每个数都必须被划分

这个问题对他来说太难了,于是他把这个问题丢给了你。

输入描述:

第一行为两个整数n,q,分别表示序列长度和询问个数。
第二行有n个数,表示序列中的每个数。
接下来的q行,每行包含一个数k,含义如题所示。

输出描述:

输出q行,每行对应一个数Yes或者No,分别表示可行/不可行

输入例子:
5 3
2 1 3 -1 4
3
2
1
输出例子:
Yes
No
Yes

-->

示例1

输入

复制

5 3
2 1 3 -1 4
3
2
1

输出

复制

Yes
No
Yes

备注:

对于的数据,
对于的数据,
对于的数据,
设ai表示数列中的第i个数,保证
保证数据完全随机
 
分析:
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e5 + 10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll a[maxn];
int main() {
std::ios::sync_with_stdio(false);
ll n, q, sum = 0;
scanf("%lld%lld",&n,&q);
for( ll i = 0; i < n; i ++ ) {
scanf("%lld",&a[i]);
sum += a[i];
}
while( q -- ) {
ll k;
scanf("%lld",&k);
if( sum%k || k > n ) {
printf("No\n");
continue;
}
ll ans = 0, avg = sum/k, cnt = 0;
bool flag = false;
for( ll i = 0; i < n; i ++ ) {
ans += a[i]; //最后可能加上0,而0可以合并到前面区间,所以用ans=0来判断
//开始用flag判断最后一位是否刚好可以让ans=avg,判断错了
if( ans == avg ) {
ans = 0;
cnt ++;
}
}
if( ans == 0 && cnt == k ) {
printf("Yes\n");
} else {
printf("No\n");
}
}
return 0;
}

  

牛客OI测试赛 C 序列 思维的更多相关文章

  1. 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板

    链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...

  2. 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契

    牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...

  3. 牛客OI测试赛2

    题目链接:https://www.nowcoder.com/acm/contest/185#question A.无序组数 暴力求出A和B的因子,注意二元组是无序的,因此还要考虑有些因子在A和B中都存 ...

  4. 牛客OI测试赛1

    题目链接: https://www.nowcoder.com/acm/contest/181#question A.斐波拉契 求$f[n-1]*f[n+1]-f[n]^2$,$f[n]$为斐波拉契数列 ...

  5. 牛客oi测试赛 二 B 路径数量

    题目描述 给出一个 n * n 的邻接矩阵A. A是一个01矩阵 . A[i][j]=1表示i号点和j号点之间有长度为1的边直接相连. 求出从 1 号点 到 n 号点长度为k的路径的数目. 输入描述: ...

  6. [牛客OI测试赛2]F假的数学游戏(斯特灵公式)

    题意 输入一个整数X,求一个整数N,使得N!恰好大于$X^X$. Sol 考试的时候只会$O(n)$求$N!$的前缀和啊. 不过最后的结论挺好玩的 $n! \approx \sqrt{2 \pi n} ...

  7. 牛客OI赛制测试赛2(0906)

    牛客OI赛制测试赛2(0906) A :无序组数 题目描述 给出一个二元组(A,B) 求出无序二元组(a,b) 使得(a|A,b|B)的组数 无序意思就是(a,b)和(b,a) 算一组. 输入描述: ...

  8. 【牛客OI赛制测试赛3】 毒瘤xor

    牛客OI赛制测试赛3 毒瘤xor 传送门 题面,水表者自重 Solution 前缀和简单题(挖坑待补) 代码实现 #include<stdio.h> #define int long lo ...

  9. 牛客OI月赛12-提高组题解

    牛客OI月赛12-提高组 当天晚上被\(loli\)要求去打了某高端oj部分原创的模拟赛,第二天看了牛客的题觉得非常清真,于是就去写了 不难发现现场写出\(260\text{pts}\)并不需要动脑子 ...

随机推荐

  1. 【Sublime】设置显示编码格式

    Mac 上的 Sublime 显示编码格式,设置方法: 右下角显示的 UTF-8 就是当前的编码格式. 添加如下代码: { "font_size": 18, // Display ...

  2. PHP xdebug API接口优化揪出了getimagesize这个鬼

    在API优化list中,公司客户系统的服务号客服有个获取聊天消息的接口getHistory请求时间很长,就去优化了下,记下过程. 一,配置环境,追踪使用Xdebug: 1.在https://xdebu ...

  3. ue4使用SceneCapture2D创建小地图示例 蓝图

    做C++项目的时候遇到了一个小地图的问题,从网上找了个蓝图的思路,转载一下. 原文:https://www.engineworld.cn/thread-3835-1-1.html 本文使用ue4提供的 ...

  4. Linux下,为应用程序添加桌面图标(ubuntu18.4)

    一.桌面图标位置 Lniux下桌面图标储存路径为:/usr/share/applications 二.桌面图标格式 所有桌面图标格式均为desktop,即名为XXX.desktop 三.编辑内容(常用 ...

  5. Java学习多线程第二天

    内容介绍 线程安全 线程同步 死锁 Lock锁 等待唤醒机制 1    多线程 1.1     线程安全 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果 ...

  6. sql语句优化:尽量使用索引避免全表扫描

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  7. .Net Core2.1 秒杀项目一步步实现CI/CD(Centos7.2)系列一:k8s高可用集群搭建总结以及部署API到k8s

    前言:本系列博客又更新了,是博主研究很长时间,亲自动手实践过后的心得,k8s集群是购买了5台阿里云服务器部署的,这个集群差不多搞了一周时间,关于k8s的知识点,我也是刚入门,这方面的知识建议参考博客园 ...

  8. python 之 前端开发(基本选择器、组合选择器、 交集与并集选择器、序列选择器、属性选择器、伪类选择器、伪元素选择器)

    11.3 css 11.31 基本选择器 11.311 id选择器 根据指定的id名称,在当前界面中找到对应的唯一一个的标签,然后设置属性 <!DOCTYPE html> <html ...

  9. XML简单了解一下

    XML是一种纯文本文档.HTML,标记是已经被W3C规定好的,自己创建一个标签是不被允许的. XML现在的用途是用来存储数据.config文件就是个XML文档.XML是可以自定义的. 每一个XML文档 ...

  10. 优雅的在WinForm/WPF/控制台 中使用特性封装WebApi

    优雅的在WinForm/WPF/控制台 中使用特性封装WebApi 说明 在C/S端作为Server,建立HTTP请求,方便快捷. 1.使用到的类库 Newtonsoft.dll 2.封装 HttpL ...