题意

给出n* n 的图,A为起点,B为终点,* 为障碍,.可以行走,问最少需要拐90度的弯多少次,无法到达输出-1。

解析

思路:构造N * M * 4个点,即将原图的每个点分裂成4个点。其中点(i,j,k)表示在(i,j)时人的方向是k,然后对于两个点(i,j,k)和(i,j,kk),如果k和kk是两个旋转90度能转换的方向,就连一条边权为1的边,而对于(i,j,k)和(i+dx[ k],j+dy[k],k)连一条边权为0的边,表示从(i,j)在方向为k的情况下能向k方向走一步到达(i+dx[k],j+dy[k],k)。因为起始和终止的方向不确定,故再添加一个源点和一个汇点,源点向起始位置四个方向连边权为0的边,汇点向终止位置四个方向连边权为0的边,然后求源点到汇点的最短路即可。

爆搜代码

#include<bits/stdc++.h>
using namespace std;
int n,sx,sy,ex,ey,a[110][110];
char k;
bool book[110][110];
int ans=1<<30;
bool cheak(int x,int y){
if(x<1||y>n||y<1||x>n||a[x][y]||book[x][y]) return false;
else return true;
}
void dfs(int x,int y,int dir,int step){
if(x==ex&&y==ey){
ans=min(step,ans);
return;
}
if(step>ans) return;
if(dir){
if(cheak(x+1,y)){
book[x+1][y]=1;
dfs(x+1,y,dir,step);
book[x+1][y]=0;
}
if(cheak(x-1,y)){
book[x-1][y]=1;
dfs(x-1,y,dir,step);
book[x-1][y]=0;
}
if(cheak(x,y+1)){
book[x][y+1]=1;
dfs(x,y+1,0,step+1);
book[x][y+1]=0;
}
if(cheak(x,y-1)){
book[x][y-1]=1;
dfs(x,y-1,0,step+1);
book[x][y-1]=0;
}
}
else{
if(cheak(x+1,y)){
book[x+1][y]=1;
dfs(x+1,y,1,step+1);
book[x+1][y]=0;
}
if(cheak(x-1,y)){
book[x-1][y]=1;
dfs(x-1,y,1,step+1);
book[x-1][y]=0;
}
if(cheak(x,y+1)){
book[x][y+1]=1;
dfs(x,y+1,dir,step);
book[x][y+1]=0;
}
if(cheak(x,y-1)){
book[x][y-1]=1;
dfs(x,y-1,0,step);
book[x][y-1]=0;
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%c",&k);
if(k=='A'){
sx=i;
sy=j;
}
else if(k=='B'){
ex=i;
ey=j;
}
else if(k=='x'){
a[i][j]=1;
}
else if(k=='.'){
a[i][j]=0;
}
else j--;
}
}
dfs(sx,sy,0,0);
dfs(sx,sy,1,0);
if(ans==1<<30) printf("-1");
else printf("%d",ans);
return 0;
}

[USACO07OCT]障碍路线 & yzoj P1130 拐弯 题解的更多相关文章

  1. bzoj1644 / P1649 [USACO07OCT]障碍路线Obstacle Course

    P1649 [USACO07OCT]障碍路线Obstacle Course bfs 直接上个bfs 注意luogu的题目和bzoj有不同(bzoj保证有解,还有输入格式不同). #include< ...

  2. 洛谷 P1649 [USACO07OCT]障碍路线Obstacle Course

    P1649 [USACO07OCT]障碍路线Obstacle Course 题目描述 Consider an N x N (1 <= N <= 100) square field comp ...

  3. Luogu P1649 [USACO07OCT]障碍路线Obstacle Course

    题目描述 Consider an N x N (1 <= N <= 100) square field composed of 1 by 1 tiles. Some of these ti ...

  4. P1649 [USACO07OCT]障碍路线Obstacle Course

    题目描述 Consider an N x N (1 <= N <= 100) square field composed of 1 by 1 tiles. Some of these ti ...

  5. [USACO07OCT]障碍路线Obstacle Course

    题目描述 Consider an N x N (1 <= N <= 100) square field composed of 1 by 1 tiles. Some of these ti ...

  6. 洛谷P1649 【[USACO07OCT]障碍路线Obstacle Course】

    题目描述 Consider an N x N (1 <= N <= 100) square field composed of 1 by 1 tiles. Some of these ti ...

  7. 障碍路线Obstacle Course

    P1649 [USACO07OCT]障碍路线Obstacle Course 裸的dfs,今天学了一个新招,就是在过程中进行最优性减枝. #include<bits/stdc++.h> us ...

  8. [洛谷1649]障碍路线<BFS>

    题目链接:https://www.luogu.org/problem/show?pid=1649 历经千辛万苦,我总算是把这个水题AC了,现在心里总觉得一万只草泥马在奔腾: 这是一道很明显的BFS,然 ...

  9. yzoj P1126 塔 题解

    题意:给n个积木,搭成两个高度相同的塔,问最高高度 正解是dp 答案在dp[n][0] 代码 #include<bits/stdc++.h> using namespace std; in ...

随机推荐

  1. Python基础总结之认识lambda函数、map函数、filter() 函数。第十二天开始(新手可相互督促)

    今天周日,白天在学习,晚上更新一些笔记,希望对大家能更好的理解.学习python~ lambda函数,也就是大家说的匿名函数.它没有具体的名称,也可以叫做一句话函数,我觉得也不过分,大家看下代码,来体 ...

  2. Java内部类超详细总结(含代码示例)

    什么是内部类 什么是内部类? 顾名思义,就是将一个类的定义放在另一个类的内部. 概念很清楚,感觉很简单,其实关键在于这个内部类放置的位置,可以是一个类的作用域范围.一个方法的或是一个代码块的作用域范围 ...

  3. 最全数据分析资料汇总(含python、爬虫、数据库、大数据、tableau、统计学等)

    一.Python基础 Python简明教程(Python3) Python3.7.4官方中文文档 Python标准库中文版 廖雪峰 Python 3 中文教程 Python 3.3 官方教程中文版 P ...

  4. java订单生成工具类

    欢迎来到付宗乐个人博客网站.本个人博客网站提供最新的站长新闻,各种互联网资讯. 还提供个人博客模板,最新最全的java教程,java面试题.在此我将尽我最大所能将此个人博客网站做的最好! 谢谢大家,愿 ...

  5. Prometheus 集成 Node Exporter

    文章首发于公众号<程序员果果> 地址:https://mp.weixin.qq.com/s/40ULB9UWbXVA21MxqnjBxw 简介 Prometheus 官方和一些第三方,已经 ...

  6. 网络安全攻击与防护--HTML学习

    第一节. HTML基本语法(文末有对该文视频讲解) HTML的官方介绍什么的我就不说了,打字也挺累的,只简单介绍一下吧,其他的懂不懂都没关系. HTML全称为Hypertext Markup Lang ...

  7. Nginx总结(一)Linux下如何安装Nginx

    以前写过一些Nginx的文章,但都是用到什么说什么,没有一个完整系统的总结.趁最近有时间,打算将Nginx相关的内容重新整理一下.nginx系列文章地址如下:https://www.cnblogs.c ...

  8. web 前端开发学习路线

    初级 HTML 5 HTML 5 与 HTML 4 的区别 HTML 5 新增的主体结构元素 HTML 5 新增的非主体结构元素 HTML 5 表单新增元素与属性 HTML 5 表单新增元素与属性(续 ...

  9. Spring-boot:多模块打包

    <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot ...

  10. 服务器小白的我,是如何将 node+mongodb 项目部署在服务器上并进行性能优化的

    前言 本文讲解的是:做为前端开发人员,对服务器的了解还是小白的我,是如何一步步将 node+mongodb 项目部署在阿里云 centos 7.3 的服务器上,并进行性能优化,达到页面 1 秒内看到 ...