Dijkstra又称单源最短路算法,就从一个节点到其他各点的最短路,解决的是有向图的最短路问题

此算法的特点是:从起始点为中心点向外层层扩展,直到扩展到中终点为止。

该算法的条件是所给图的所有边的权值非负。

实现的Dijkstra的过程其实也是一种贪心。

其实把下图看懂,基本Dijkstra的实现流程就差不多了

算法流程如图:

算法代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1010;
const int INF = 0x3f3f3f3f;
int Map[maxn][maxn], vis[maxn], dis[maxn];
int n, m; void init() {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j)Map[i][j] = 0;
else Map[i][j] = INF;
}
}
memset(vis, 0, sizeof(vis));//标记初始化
} void input() {
int u, v, w;
for (int i = 0; i<m; i++) {
cin >> u >> v >> w;
if (Map[u][v]>w) {
Map[u][v] = Map[v][u] = w;
}
}
} void Dijkstra() {
for (int i = 1; i <= n; i++) {//把和源点相连的点的边权记录到dis数组中
dis[i] = Map[1][i];
}
vis[1] = 1;
for (int i = 1; i <= n; i++) {
int MIN = INF, x = -1;
for (int j = 1; j <= n; j++) {
if (!vis[j] && dis[j]<MIN) {//得到每次的最小值
MIN = dis[j];
x = j;
}
}
vis[x] = 1;//对走过的点进行标记
for (int j = 1; j <= n; j++) {
if (!vis[j] && MIN + Map[x][j]<dis[j]) {//松弛操作,这是Dijkstra的最重要的步骤
dis[j] = Map[x][j] + MIN;//很多题就是在松弛操作上做文章,包括之后做的差分约束的也是如此
}
}
}
} void output() {//你会发现dis数组存的就是源点到其他各点的最短距离
for (int i = 1; i <= n; i++) {
printf("%d ", dis[i]);
}
} int main() {
while (cin >> n >> m) {
init();//初始化
input();//输入
Dijkstra();//算法过程
output();//输出
}
return 0;
}

最短路问题---Dijkstra算法学习的更多相关文章

  1. dijkstra算法学习

    dijkstra算法学习 一.最短路径 单源最短路径:计算源点到其他各顶点的最短路径的长度 全局最短路径:图中任意两点的最短路径 Dijkstra.Bellman-Ford.SPFA求单源最短路径 F ...

  2. 最短路问题 Dijkstra算法- 路径还原

    // 路径还原 // 求最短路,并输出最短路径 // 在单源最短路问题中我们很容易想到,既然有许多条最短路径,那将之都存储下来即可 // 但再想一下,我们是否要把所有的最短路径都求出来呢? // 实际 ...

  3. 最短路问题Dijkstra算法

    Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...

  4. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

  5. dijkstra算法学习笔记

    dijkstra是一种单源最短路径算法,即求一个点到其他点的最短路.不能处理负边权. 最近某种广为人知的算法频繁被卡,让dijkstra逐渐成为了主流,甚至在初赛中鞭尸了SPFA(? dijkstra ...

  6. HDU_1874——最短路问题,Dijkstra算法模版

    Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行 ...

  7. 单源最短路问题 Dijkstra 算法(朴素+堆)

    选择某一个点开始,每次去找这个点的最短边,然后再从这个开始不断迭代,更新距离. 代码: 朴素(vector存图) #include <iostream> #include <cstd ...

  8. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  9. 最短路问题之Dijkstra算法

    题目: 在上一篇博客的基础上,这是另一种方法求最短路径的问题. Dijkstra(迪杰斯特拉)算法:找到最短距离已经确定的点,从它出发更新相邻顶点的最短距离.此后不再关心前面已经确定的“最短距离已经确 ...

随机推荐

  1. 【数据结构】线段树(Segment Tree)

    假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作. 1.(query)随机在这个数组中选一个区间,求出这个区间所有数的和. 2.(update)不断地随机修改这个数组中 ...

  2. (十四)c#Winform自定义控件-键盘(一)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  3. 获取n月后的当前时间

    例如用户计算会员的到期日期时间 public static Date getMonthNextOrBeforeDate(int monthNum) { Date dNow = new Date(); ...

  4. Java请求Http

    一.工具类,直接粘贴调用即可 package cn.com.service.httpReq; import java.io.BufferedReader;import java.io.IOExcept ...

  5. 非常详细的Django使用Token(转)

    基于Token的身份验证 在实现登录功能的时候,正常的B/S应用都会使用cookie+session的方式来做身份验证,后台直接向cookie中写数据,但是由于移动端的存在,移动端是没有cookie机 ...

  6. iView表格行验证问题

    iView Table 3.2.0 版本 需求: 验证前两行的姓名不能为空: 解决方案: 判断是否前两行,如是则增加校验规则: 需在<FormItem>前加<Form>标签否则 ...

  7. redis最基础的入门教程

      Redis最基础入门教程 简介 Redis 简介 Redis 优势 Redis与其他key-value存储有什么不同? 字符串(Strings) 哈希(Hash) 列表(List) 集合(Sets ...

  8. Windows Server 2008磁盘管理

    下面学习一下磁盘管理,基本磁盘 分区 空间只能是同一块磁盘的空间,动态磁盘  卷 空间可以是多块硬盘上的空间,怎么创建 RAID-0  条带卷 读写快 无容错 适合存放不太重要的数据 ,RAID-1  ...

  9. Container及其内部进程监控剖析

    目前市场上的虚拟化技术种类很多,例如moby(docker).LXC.RKT等等.在带来方便应用部署和资源充分利用的好处的同时,如何监控相应Container及其内部应用进程成为运维人员不可避免遇到的 ...

  10. Spring源码剖析4:其余方式获取Bean的过程分析

    原型Bean加载过程 之前的文章,分析了非懒加载的单例Bean整个加载过程,除了非懒加载的单例Bean之外,Spring中还有一种Bean就是原型(Prototype)的Bean,看一下定义方式: 1 ...