最短路问题---Dijkstra算法学习
Dijkstra又称单源最短路算法,就从一个节点到其他各点的最短路,解决的是有向图的最短路问题
此算法的特点是:从起始点为中心点向外层层扩展,直到扩展到中终点为止。
该算法的条件是所给图的所有边的权值非负。
实现的Dijkstra的过程其实也是一种贪心。
其实把下图看懂,基本Dijkstra的实现流程就差不多了
算法流程如图:
算法代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1010;
const int INF = 0x3f3f3f3f;
int Map[maxn][maxn], vis[maxn], dis[maxn];
int n, m;
void init() {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j)Map[i][j] = 0;
else Map[i][j] = INF;
}
}
memset(vis, 0, sizeof(vis));//标记初始化
}
void input() {
int u, v, w;
for (int i = 0; i<m; i++) {
cin >> u >> v >> w;
if (Map[u][v]>w) {
Map[u][v] = Map[v][u] = w;
}
}
}
void Dijkstra() {
for (int i = 1; i <= n; i++) {//把和源点相连的点的边权记录到dis数组中
dis[i] = Map[1][i];
}
vis[1] = 1;
for (int i = 1; i <= n; i++) {
int MIN = INF, x = -1;
for (int j = 1; j <= n; j++) {
if (!vis[j] && dis[j]<MIN) {//得到每次的最小值
MIN = dis[j];
x = j;
}
}
vis[x] = 1;//对走过的点进行标记
for (int j = 1; j <= n; j++) {
if (!vis[j] && MIN + Map[x][j]<dis[j]) {//松弛操作,这是Dijkstra的最重要的步骤
dis[j] = Map[x][j] + MIN;//很多题就是在松弛操作上做文章,包括之后做的差分约束的也是如此
}
}
}
}
void output() {//你会发现dis数组存的就是源点到其他各点的最短距离
for (int i = 1; i <= n; i++) {
printf("%d ", dis[i]);
}
}
int main() {
while (cin >> n >> m) {
init();//初始化
input();//输入
Dijkstra();//算法过程
output();//输出
}
return 0;
}
最短路问题---Dijkstra算法学习的更多相关文章
- dijkstra算法学习
dijkstra算法学习 一.最短路径 单源最短路径:计算源点到其他各顶点的最短路径的长度 全局最短路径:图中任意两点的最短路径 Dijkstra.Bellman-Ford.SPFA求单源最短路径 F ...
- 最短路问题 Dijkstra算法- 路径还原
// 路径还原 // 求最短路,并输出最短路径 // 在单源最短路问题中我们很容易想到,既然有许多条最短路径,那将之都存储下来即可 // 但再想一下,我们是否要把所有的最短路径都求出来呢? // 实际 ...
- 最短路问题Dijkstra算法
Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...
- 单源最短路径——Dijkstra算法学习
每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...
- dijkstra算法学习笔记
dijkstra是一种单源最短路径算法,即求一个点到其他点的最短路.不能处理负边权. 最近某种广为人知的算法频繁被卡,让dijkstra逐渐成为了主流,甚至在初赛中鞭尸了SPFA(? dijkstra ...
- HDU_1874——最短路问题,Dijkstra算法模版
Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行 ...
- 单源最短路问题 Dijkstra 算法(朴素+堆)
选择某一个点开始,每次去找这个点的最短边,然后再从这个开始不断迭代,更新距离. 代码: 朴素(vector存图) #include <iostream> #include <cstd ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- 最短路问题之Dijkstra算法
题目: 在上一篇博客的基础上,这是另一种方法求最短路径的问题. Dijkstra(迪杰斯特拉)算法:找到最短距离已经确定的点,从它出发更新相邻顶点的最短距离.此后不再关心前面已经确定的“最短距离已经确 ...
随机推荐
- Kafka消息队列初识
一.Kafka简介 1.1 什么是kafka kafka是一个分布式.高吞吐量.高扩展性的消息队列系统.kafka最初是由Linkedin公司开发的,后来在2010年贡献给了Apache基金会,成为了 ...
- .NET Core 3.0预览版7中的ASP.NET Core和Blazor更新
.NET Core 3.0 Preview 7现已推出,它包含一系列ASP.NET Core和Blazor的新更新. 以下是此预览中的新功能列表: 最新的Visual Studio预览包括.NET C ...
- 算法实战-OJ之旅
算法虽然不是特别简单,但没有你想象中的那么难. Sort Array By Parity easy AC-17ms. 按照<算法导论>排序一章的一些概念,第二种可以称为是原址的(in-pl ...
- Java学习多线程第二天
内容介绍 线程安全 线程同步 死锁 Lock锁 等待唤醒机制 1 多线程 1.1 线程安全 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果 ...
- java并发编程(二)----创建并运行java线程
实现线程的两种方式 上一节我们了解了关于线程的一些基本知识,下面我们正式进入多线程的实现环节.实现线程常用的有两种方式,一种是继承Thread类,一种是实现Runnable接口.当然还有第三种方式,那 ...
- PHP版本的区别与用法详解
在我们安装PHP模块时,有时需要注意PHP编译的版本,下面讲解下PHP中VC6.VC9.TS.NTS版本的区别与用法详解,介绍php的两种执行方式. 1. VC6与VC9的区别:VC6版本是使用Vis ...
- 从SpringBoot构建十万博文聊聊缓存穿透
前言 在博客系统中,为了提升响应速度,加入了 Redis 缓存,把文章主键 ID 作为 key 值去缓存查询,如果不存在对应的 value,就去数据库中查找 .这个时候,如果请求的并发量很大,就会对后 ...
- 决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特 ...
- Jenkins使用aqua-microscanner-plugin进行容器漏洞扫描
官方地址:https://github.com/jenkinsci/aqua-microscanner-plugin Step1 在jenkins安装"Aqua MicroScanner&q ...
- Java函数式编程原理以及应用
一. 函数式编程 Java8所有的新特性基本基于函数式编程的思想,函数式编程的带来,给Java注入了新鲜的活力. 下面来近距离观察一下函数式编程的几个特点: 函数可以作为变量.参数.返回值和数据类型. ...