Max Mex

题意:问在树上的所有路中mex值最大是多少。

题解:

用线段树维护值。

区间[L,R]意味着 区间[L,R]的数可不可以合并。

重点就是合并的问题了。

首先合法的区间只有3种:

1. 一个点。

2. 一条从上到下的线段  即 u->v  u = lca(u,v)。

3.一条从下到上到下的线段 u -> p -> v  p = lca(u,v)

1 和 1 可以直接合并, 合并之后可能成为 2 或者成为3。

1 和 2 合并的时候 可能变成 2 或者 3。 注意的是 1 往上爬的时候可能出现在 2 的中间位置而不是端点位置。

1 和 3 合并的之后 只会变成 3。并且 p 是不会变得,只有 u 和 v 会变。

2 和 2 合并的时候 可能保持2 也可以变成3。

2 和 3 合并的时候 只会保持3, 并且 p 一样不会边,只有u 和 v 会变。  1 3 合并的操作 和 2 3 合并的操作是一样的。

3 和 3 合并的时候 只会保持3, 还是p不会边, u 和 v 会变。

所以 根据前面说的 我们要记录的是 type, u, v, p,ok。

询问的时候,我们先问出[1,x]哪一段是合法的,然后再在右边去询问能不能把右边的并到[1,x]上。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
int anc[N][];
int v[N], deep[N];
vector<int> vc[N];
void dfs(int o){
for(int x : vc[o]){
deep[x] = deep[o]+;
anc[x][] = o;
for(int i = ; i < ; ++i) anc[x][i] = anc[anc[x][i-]][i-];
dfs(x);
}
}
int lca(int u, int v){
if(deep[u] > deep[v]) swap(u,v);
int k = deep[v] - deep[u];
for(int i = ; i >= ; --i){
if((k>>i)&) v = anc[v][i];
}
if(u == v) return u;
for(int i = ; i >= ; --i){
if(anc[u][i] != anc[v][i])
u = anc[u][i], v = anc[v][i];
}
return anc[u][];
}
int ok[N<<], pre[N<<], type[N<<], low[N<<][];
void Merge(int rt, int ls, int rs){
ok[rt] = ;
if(!ok[ls] || !ok[rs]) return;
if(pre[ls] == low[ls][] && pre[rs] == low[rs][]){
int fp = lca(pre[ls], pre[rs]);
ok[rt] = ; pre[rt] = fp;
if(fp == pre[ls] || fp == pre[rs]){
type[rt] = ;
if(fp == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
}
else {
type[rt] = ;
low[rt][] = pre[ls]; low[rt][] = pre[rs];
}
return ;
}
if(pre[ls] == low[ls][]) swap(ls, rs);
if(type[ls] == && type[rs] == && pre[rs] == low[rs][]){
int fp = lca(pre[ls], pre[rs]);
int sp = lca(low[ls][], low[rs][]);
pre[rt] = fp;
if(fp == sp){
if(fp == pre[rs]) {
ok[rt] = ; type[rt] = ;
low[rt][] = low[ls][];
}
else {
ok[rt] = ; type[rt] = ;
low[rt][] = low[ls][]; low[rt][] = low[rs][];
}
}
else if((fp == pre[ls] || fp == pre[rs]) && (sp == low[ls][]||sp == low[rs][])){
ok[rt] = ; type[rt] = ;
if(sp == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
}
return ;
}
if(type[ls] == && type[rs] == ){
int fp = lca(pre[ls], pre[rs]);
int sp = lca(low[ls][], low[rs][]);
pre[rt] = fp;
if(fp == sp){
type[rt] = ; ok[rt] = ;
low[rt][] = low[ls][]; low[rt][] = low[rs][];
}
else if((fp == pre[ls] || fp == pre[rs]) && (sp == low[ls][]||sp == low[rs][])){
ok[rt] = ; type[rt] = ;
if(sp == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
}
else ok[rt] = ;
return ;
}
if(type[ls] + type[rs] == ){
if(type[ls] == ) swap(ls, rs);
int fp = lca(pre[ls], pre[rs]);
if(fp != pre[rs]) ok[rt] = ;
else {
type[rt] = ; pre[rt] = fp;
int sp = lca(low[ls][], low[rs][]);
if(sp == low[ls][]){
low[rt][] = low[rs][]; low[rt][] = low[rs][];
ok[rt] = ;
return ;
}
if(sp == low[rs][]){
low[rt][] = low[ls][];
low[rt][] = low[rs][]; ok[rt] = ;
return ;
}
sp = lca(low[ls][], low[rs][]);
if(sp == low[ls][]){
low[rt][] = low[rs][]; low[rt][] = low[rs][];
ok[rt] = ;
return ;
}
if(sp == low[rs][]){
low[rt][] = low[rs][]; low[rt][] = low[ls][];
ok[rt] = ;
return ;
}
return ;
}
return ;
}
if(type[ls] + type[rs] == ){
type[rt] = ;
if(pre[ls] == pre[rs]){
pre[rt] = pre[ls];
int sp1 = lca(low[ls][], low[rs][]), sp2 = lca(low[ls][], low[rs][]);
if((sp1 == low[ls][] || sp1 == low[rs][]) && (sp2 == low[ls][] || sp2 == low[rs][])){
ok[rt] = ;
if(sp1 == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
if(sp2 == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
return ;
}
sp1 = lca(low[ls][], low[rs][]), sp2 = lca(low[ls][], low[rs][]);
if((sp1 == low[ls][] || sp1 == low[rs][]) && (sp2 == low[ls][] || sp2 == low[rs][])){
ok[rt] = ;
if(sp1 == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
if(sp2 == low[ls][]) low[rt][] = low[rs][];
else low[rt][] = low[ls][];
return ;
}
}
}
}
void Update(int L, int k, int l, int r, int rt){
if(l == r){
type[rt] = ok[rt] = ;
low[rt][] = pre[rt] = k;
return ;
}
int m = l+r >> ;
if(L <= m) Update(L, k, lson);
else Update(L, k, rson);
Merge(rt, rt<<, rt<<|);
}
void Copy(int aim, int f){
ok[aim] = ok[f]; pre[aim] = pre[f];
low[aim][] = low[f][]; low[aim][] = low[f][];
type[aim] = type[f];
}
int n, u;
int to = (<<)+, b = , ansr;
int Query(int l, int r, int rt){
if(ok[rt]){
if(b == ) {
b = to; ansr = r; Copy(b, rt);
return ;
}
Merge(to+, to, rt);
if(ok[to+]){
Copy(to, to+); ansr = r;
return ;
}
if(l != r){
int m = l+r >> ;
int k = Query(lson);
if(k == ) Query(rson);
}
return ;
}
int m = l+r >> ;
int k = Query(lson);
if(k == ) Query(rson);
return ;
}
int main(){
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d", &v[i]), v[i] += ;
for(int i = ; i <= n; ++i){
scanf("%d", &u);
vc[u].pb(i);
}
dfs();
for(int i = ; i <= n; ++i)
Update(v[i], i, , n, );
int q, op, l, r;
scanf("%d", &q);
while(q--){
scanf("%d", &op);
if(op == ){
scanf("%d%d", &l, &r); swap(v[l], v[r]);
Update(v[l], l, , n, ); Update(v[r], r, , n, );
}
else {
b = ; Query(,n,);
printf("%d\n", ansr);
}
}
return ;
}

CodeForces 1084 F Max Mex的更多相关文章

  1. 【Codeforces 1083C】Max Mex(线段树 & LCA)

    Description 给定一颗 \(n\) 个顶点的树,顶点 \(i\) 有点权 \(p_i\).其中 \(p_1,p_2,\cdots, p_n\) 为一个 \(0\sim (n-1)\) 的一个 ...

  2. Codeforces 1083C Max Mex

    Description 一棵\(N\)个节点的树, 每个节点上都有 互不相同的 \([0, ~N-1]\) 的数. 定义一条路径上的数的集合为 \(S\), 求一条路径使得 \(Mex(S)\) 最大 ...

  3. CF 526F Max Mex(倍增求LCA+线段树路径合并)

    Max Mex 题目地址:https://codeforces.com/contest/1084/problem/F 然后合并时注意分情况讨论: 参考代码: #include<bits/stdc ...

  4. CF 1083 C. Max Mex

    C. Max Mex https://codeforces.com/contest/1083/problem/C 题意: 一棵$n$个点的树,每个点上有一个数(每个点的上的数互不相同,而且构成一个0~ ...

  5. Max Mex

    Max Mex 无法直接处理 可以二分答案! [0,mid]是否在同一个链上? 可以不修改地做了 修改? 能不能信息合并?可以! 记录包含[l,r]的最短链的两端 可以[0,k][k+1,mid]合并 ...

  6. CF1083C Max Mex 线段树

    题面 CF1083C Max Mex 题解 首先我们考虑,如果一个数x是某条路径上的mex,那么这个数要满足什么条件? 1 ~ x - 1的数都必须出现过. x必须没出现过. 现在我们要最大化x,那么 ...

  7. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

  8. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  9. Codeforces 731 F. Video Cards(前缀和)

    Codeforces 731 F. Video Cards 题目大意:给一组数,从中选一个数作lead,要求其他所有数减少为其倍数,再求和.问所求和的最大值. 思路:统计每个数字出现的个数,再做前缀和 ...

随机推荐

  1. 初次见面C#排坑记录

    排一次开发C#遇到的坑,同时说一下自己对C#中文件夹构建方式的体会. 一个开发Java的人留下了痛苦的泪水,变量命名规则不一样,连括号打的都不一样,

  2. codeforces 318 A.Even Odds B.Sereja and Array

    A.Even Odds 给你n和k, 把从1到n先排奇数后排偶数排成一个新的序列,输出第k个位置的数. 比如 10 3  拍好后就是 1 3 5 7 9 2 4 6 8 10   第3个数是5. // ...

  3. 搭建谷歌浏览器无头模式抓取页面服务,laravel->php->python->docker !!!

    背景: 公司管理系统需要获取企业微信页面的配置参数如企业名.logo.人数等信息并操作,来隐藏相关敏感信息并自定义简化企业号配置流程 第一版已经实现了扫码登录获取cookie,使用该cookie就能获 ...

  4. Maven安装和配置环境变量

    Maven配置 1.下载 下载maven 3.5.4 先到官网http://maven.apache.org/download.cgi 下载最新版本(目前是3.5.4 ),下载完成后,解压到某个目录( ...

  5. js 共有和私有

    //共有 var SunHang = function(){ var name = "ssss"; this.name = "hhhhh"; function ...

  6. C# 在某个线程上创建的控件不能成为在另一个线程上创建的控件的父级

    //使用委托进行修改UI界面 if (this.InvokeRequired) { this.Invoke(new MethodInvoker(delegate { createList(); })) ...

  7. DT-06 For MQTT

    感谢关注深圳四博智联科技有限公司产品!我公司提供完整的WiFi信号强度采集方案,包括WiFi信号采集.设备远程管理平台.智能终端应用等. Doit_MQTT透传固件基于乐鑫ESP_IOT_SDK使用C ...

  8. 解放双手——相机与IMU外参的在线标定

    本文作者 沈玥伶,公众号:计算机视觉life,编辑部成员 一.相机与IMU的融合 在SLAM的众多传感器解决方案中,相机与IMU的融合被认为具有很大的潜力实现低成本且高精度的定位与建图.这是因为这两个 ...

  9. JS基础-该如何理解原型、原型链?

    JS的原型.原型链一直是比较难理解的内容,不少初学者甚至有一定经验的老鸟都不一定能完全说清楚,更多的"很可能"是一知半解,而这部分内容又是JS的核心内容,想要技术进阶的话肯定不能对 ...

  10. Java集合框架之HashMap浅析

    Java集合框架之HashMap浅析 一.HashMap综述: 1.1.HashMap概述 位于java.util包下的HashMap是Java集合框架的重要成员,它在jdk1.8中定义如下: pub ...